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We review how the renormalized force correlator ��u�, the function computed in the functional
renormalization-group �RG� field theory, can be measured directly in numerics and experiments on the dynam-
ics of elastic manifolds in the presence of pinning disorder. We show how this function can be computed
analytically for a particle dragged through a one-dimensional random-force landscape. The limit of small
velocity allows one to access the critical behavior at the depinning transition. For uncorrelated forces one finds
three universality classes, corresponding to the three extreme value statistics, Gumbel, Weibull, and Fréchet.
For each class we obtain analytically the universal function ��u�, the corrections to the critical force, and the
joint probability distribution of avalanche sizes s and waiting times w. We find P�s�= P�w� for all three cases.
All results are checked numerically. For a Brownian force landscape, known as the Alessandro, Beatrice,
Bertotti, and Montorsi �ABBM� model, avalanche distributions and ��u� can be computed for any velocity. For
two-dimensional disorder, we perform large-scale numerical simulations to calculate the renormalized force
correlator tensor �ij�u��, and to extract the anisotropic scaling exponents �x��y. We also show how the
Middleton theorem is violated. Our results are relevant for the record statistics of random sequences with linear
trends, as encountered, e.g., in some models of global warming. We give the joint distribution of the time s
between two successive records and their difference in value w.
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I. INTRODUCTION

Elastic objects driven through a disordered environment
are ubiquitous in nature, including magnets �1,2�, supercon-
ductors �3,4�, density waves �5,6�, wetting �7,8�, dry friction
�9�, dislocation �10�, crack propagation �11�, and earthquake
dynamics �12�. These phenomena can be studied by different
theoretical approaches, including phenomenological argu-
ments �3�, mean field models �13�, functional renormaliza-
tion group for statics �14–40� and driven dynamics �41–48�.
They were also studied with numerical techniques �49–52�.
In several cases the experimental results seem to be in rea-
sonable agreement with the theory �see �53� for vortex lat-
tices, �54� for ferroelectrics, and �1� for magnetic interfaces�,
but some discrepancies are still manifest, at least with the
simplest theories, in some cases, e.g., the depinning of the
contact line of a fluid �7,8,48�.

Recent theoretical progress allows not only for qualita-
tive, but also for quantitative tests. On one hand, for inter-
faces, powerful algorithms now allow one to find the exact
depinning threshold and critical configuration on a cylinder
�52,55� and to study creep dynamics �56�. On the other hand
the functional renormalization group �FRG� has been ex-
tended beyond the lowest order �one loop�, and it was shown
that differences between statics and depinning become mani-
fest only at two loops �14,41�, i.e., to second order in an
expansion in d=4−� where d is the internal dimension of the
manifold. Such differences appear for instance in the rough-
ness exponent �. The FRG is a field theoretic tool for disor-
dered systems, which captures the complex glassy physics of
numerous metastable states at the expense of introducing,
rather than a single coupling as in standard critical phenom-
ena, a function, ��u�, of the displacement field u, which
flows to a fixed point �FP� �*�u�. This FP is nonanalytic, as

is the effective action of the theory. The nonanalyticity is a
rather unconventional feature, and the validity of the ap-
proach has been questioned: one could argue that, although
�*�u� is perturbative near d=4, the second derivative ���0�
has gone to infinity, hence we have left the domain con-
trolled by perturbation theory. To put this criticism to rest,
one first shows how an observable of the experimental sys-
tem can be defined, which is identical to the field theoretic
disorder correlator ��u�: the idea �57� is to add a quadratic
confining potential to the system, which formally acts as a
mass for the elastic modes of the interface. The disorder
correlator ��u� can then be measured directly as the second
moment of the interface displacement.

This method has been used in a numerical simulation of
interfaces in a disordered magnet, to compute numerically
the zero-temperature FRG fixed-point function ��u� in the
statics, for interfaces �N=1� using powerful exact minimiza-
tion algorithms �58�. A variety of disorder types, random
bond, random field, and periodic disorder were studied in
various dimensions d=0,1 ,2 ,3. The results are close to one-
loop predictions and deviations are consistent with two-loop
FRG. The most important feature, namely a linear cusp in
��u�, was clearly seen. These results come in strong support
for the underlying hypothesis of a nonanalytic field theory,
perturbatively accessible in a d=4−� expansion.

In our Letter �59�, we have extended the method of
�57,58� to driven systems. In particular it allows one to mea-
sure the FRG fixed-point function �*�u� near the depinning
transition at velocity v=0+. The form of this fixed point was
obtained to one loop �43,44�, but the remarkable fact is that
it is only to two-loop order that it differs from the static fixed
point �14,41�. Shortly after, this tiny difference was mea-
sured, beyond statistical uncertainties, together with the pre-
dicted linear cusp, in a numerical study �60� of a line driven
in a one-dimensional medium.

PHYSICAL REVIEW E 79, 051105 �2009�

1539-3755/2009/79�5�/051105�40� ©2009 The American Physical Society051105-1

http://dx.doi.org/10.1103/PhysRevE.79.051105


In this situation, it is useful to find a simple model, which
can be solved analytically, and exhibits many features of the
more complicated situation. Such a model is a particle in a
random-force landscape, pulled by a moving spring. Since
there is no internal degree of freedom, it is the d=0 limit of
the depinning fixed point for interfaces. Similar d=0 toy
models were very useful in the study of the statics. The uni-
versality classes there were found to be parametrized by the
exponent ��1, with a �presumably unique� universal fixed-
point function ��u�=−R��u� in each case, with R�u���u�� at
large �u�, with �=4−4 /�. Only in some cases this function
was obtained analytically, e.g., for the case �=4 /3 of the
Sinai model �57�, which corresponds to the random-field dis-
order class. It is thus quite interesting to obtain the corre-
sponding results for the depinning fixed point. Of course
another application of the d=0 model is driving a fixed-size
manifold over very large distance, it eventually behaves
again as a particle with some effective random-force land-
scape.

The aim of this paper is to give a detailed account of the
results summarized in �59�, and to present some different
ones. We summarize the basic ideas in Sec. II, relegating
details of the field-theoretic derivation in Appendix A.

In Sec. III, we give a detailed derivation of the analytical
results for the d=0 particle model, focusing there on uncor-
related random forces. This yields an exponent � in a con-
tinuous range 0��	2 with corresponding fixed-point func-
tions ��u� easier to compute than in the statics. The result
depends on the tail of the distribution of the local random
force, i.e., we find the three main universality classes of ex-
treme value statistics: The Gumbel, Weibull, and Frechet dis-
tribution.

In Sec. IV, we calculate analytically the joint avalanche
size s and waiting time w distribution. The avalanche distri-
bution was computed recently �61� in a d=4−� expansion
using FRG, and the present results hence correspond to the
d=0 limit. There it was shown how the avalanche distribu-
tion is related to the nonanalyticity of the set of all cumulants
of the displacement field.

Interestingly, the problem of a particle driven in one di-
mension is related to the so-called record statistics �62,63�. If
the particle is pulled by a spring the problem is related to
record statistics for random sequences with linear trends
�64�, whose interest has been revived in the context of global
warming models �65�. Translated into the language of
records, we obtain in Sec. IV, the joint distribution of the
time s between two successive records and their difference in
value, w, for a sequence of independent and identically dis-
tributed �IID� random variables with trends, i.e., variables
Yn=Xn+cn where Xn are IID random variables, and c a drift.
These results are obtained for the three classes of extremal
statistics.

In Sec. V, we check some of our above results numeri-
cally; we also study numerically a particle driven at nonzero
velocity v�0, and find that the velocity smoothens the cusp
in the force correlator.

In Sec. VI we consider long-range correlated random-
force landscapes, specifically the case of a Brownian force.
For this model, known as the Alessandro, Beatrice, Bertotti,
and Montorsi �ABBM� model for domain wall motion, re-

markably, the stationary distribution of instantaneous veloci-
ties can be computed �66� for any nonzero average driving
velocity v�0. From that we obtain ��u� for any v�0. We
also compute the quasistatic ��u� and avalanche distribution.
It matches with the limit v→0+, and shows how the cusp is
smoothened at v�0.

In Sec. VII we summarize some known results and some
alternate ones, common to record statistics and to the present
model of a driven particle, either with no mass �fixed-force
driving, symmetric records�, or with a mass �fixed-velocity
driving, records with drifts�. In particular we study in detail
the record statistics for a Levy-walk landscape with drift.

Finally we address the outstanding question of the depin-
ning for systems which can move in more than one direction,
also termed “N�1,” with N the number of components of
the displacement field u �e.g., N=2 for a line moving in three
dimension�. In particular there is still no satisfactory field
theoretic description for this case based on FRG. This ques-
tion was studied by Ertaş and Kardar �67�, but they made the
approximation that the disorder correlator only depends on
the direction in which the system is driven. Considering two
manifolds which are driven on trajectories far apart in the
transversal direction, their renormalized disorder correlators
should be independent, questioning the assumptions in the
Ertaş-Kardar approach. We have studied this situation in the
field theory �68� �see also some study at v�0 in �69��, but
consistent and stable solution of the fixed-point equations
seem quite complicated and are still lacking. In this situation
it is important to have some numerical results as guide for
the analytical treatment. In Sec. VIII we therefore discuss the
changes necessary to study an elastic manifold driven
through a higher-dimensional random environment, and
complement this in Sec. IX by a numerical study of a particle
dragged through a random-energy landscape. Especially, we
show numerically, that the scaling exponents �“roughness”�
in the direction of the driving �x and perpendicular to it �y are
different, and satisfy �x��y. We also find that the cross cor-
relator in the transversal direction �i.e., the force correlator
between forces in the direction x of the driving, and its trans-
versal one y, measured as a function of the transversal dis-
tance uy, �xy�ux=0,uy�, is nonvanishing.

II. SUMMARY OF THE METHOD

We consider the equation of motion for the overdamped
dynamics of an elastic manifold parametrized by its time-
dependent displacement field u�x , t�,


�tu�x,t� = Fx�u�t�;w�t�� ,

Fx�u;w� = m2�w − u�x�� + c�x
2u�x� + F„x,u�x�… , �1�

where Fx�u�t� ;w�t�� is the total force exerted on the manifold
�we note u�t�= �u�x , t��x�Rd is the manifold configuration, x
being its d-dimensional internal coordinate�; 
 is the friction
coefficient and c the elastic constant. Here at the bare level,
the random pinning force is F�x ,u�=−�uV�x ,u� and
the random potential V has correlations V�0,x�V�u ,x��
=R0�u��d�x−x��. We consider first random-bond bare
disorder with a short-ranged R0�u�. We have added a har-
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monic coupling to an external variable w�t�, a given function
of time �in most cases we choose it uniform in x�. This is the
simplest generalization of the statics, where w�t�=w is time
independent. It is useful to define the fixed-w energy

Hw�u� =	 ddx
m2

2
�u�x� − w�2 + V„x,u�x�… �2�

associated to the force Fx�u ;w�=−
�Hw�u�
�u�x� . If w�t� is an in-

creasing function of t the model represents an elastic mani-
fold “pulled” by a spring, see Fig. 1.

We first describe qualitatively how to measure the FRG
functions and later justify why the relation is expected to be
exact. We are interested in the observable w�t�− 
ū�t�� where
ū�t�=L−d�ddxu�x , t� is the center of mass position, and 
·�
denotes thermal averages, i.e., the ground state at zero tem-
perature. It represents the shift between the translationally
averaged displacement and the center of the well, i.e., the
extension of the spring. It is thus proportional to the pulling
force on the manifold, hence to the translationally averaged
pinning force minus the friction force, i.e., w�t�− ū�t�
=m−2�
v�t�−�xF(x ,u�x , t�)� �if we use periodic boundary
conditions inside the manifold�. Of particular interest are

w�t� − 
ū�t�� = m−2fav�t� ,

�w�t� − 
ū�t����w�t�� − 
ū�t����c = m−4L−dDw�t,t�� , �3�

where connected means with respect to the double average

¯�. If we consider a function w�t� such that dw�t� /dt�0,
one can also write

Dw�t,t�� = �w„w�t�,w�t��… . �4�

As written, the function �w may in general depend on the
history w�t�. However, we expect that for fixed L ,m and
slow enough w�t�, e.g., w�t�=vt with v→0+, one has
�w(w�t� ,w�t��)→��w�t�−w�t���. This function ��w−w��,
which is independent of the process w�t�, is the one defined

in the F.T. The derivation of this property is given in Appen-
dix A to which we refer the reader for technical details. Note
that we are discussing now N=1 systems �interfaces�, subtle-
ties related to N�1 are discussed in Sec. VIII.

Let us now describe T=0 depinning. Quasistatic depin-
ning is studied as the limiting case where dw /dt→0+. The
quasistatic motion can be described as follows �in the con-
tinuum model�. One starts in a metastable state u0�x� for a
given w=w0, i.e., a zero-force state Fx(u0�x� ;w)=0 which is
a local minimum of Hw0

�u� with a positive barrier. One then
increases w. For smooth short-scale disorder, the resulting
deformation of u�x� is smooth. At some w=w1, the barrier
vanishes. For w=w1

+ the manifold moves downward in en-
ergy until it is blocked again in a metastable state u1�x�
which again is a local minimum of Hw1

�u�. We are interested
in the center of mass �i.e., translationally averaged� displace-
ment ū=L−d�ddxu�x�. The above process defines a function
ū�w� which exhibits jumps at the set wi. Note that time has
disappeared: evolution is only used to find the next location.
The first two cumulants

w − u�w� = m−2fc, �5�

�w − u�w���w� − u�w���
c

= m−4L−d��w − w�� �6�

allow a direct determination of the averaged �m dependent�
critical force fc and of ��w�. Note that u�w� a priori depends
on the initial condition and on its orbit but at fixed m one
expects an averaging effect when w is moved over a large
region. This is further discussed below. Note that the defini-
tion of the �finite size� critical force is very delicate in the
thermodynamic limit �38�.

Elastic systems driven by a spring and stick-slip type mo-
tion were studied before, e.g., in the context of dry friction.
The force fluctuations and jump distribution were studied
numerically for a string driven in a random potential �70�.
However, the precise connection to quantities defined and
computed in the field theory has to our knowledge not been
made. The dependence in m for small m predicted by FRG,

��w�=m�−2��̃�wm−��, is consistent with observations of �70�
but the resulting �̃�w� has never been measured. Fully con-
nected mean-field models of depinning also reduce to a par-
ticle pulled by a spring, together with some self-consistency
condition. Reference �44� discusses related issues in an ex-
pansion around mean field. As discussed below, our main
remarks here are much more general, independent of any
approximation scheme, and provide a rather simple and
transparent way to attack the problem.

Note that the manifold in the harmonic well can be ap-
proximated by �L /Lm�d roughly independent pieces with
Lm�1 /m. The motion of each piece over large distances
resembles the one of a particle, i.e., a d=0 model, but with a
rescaled unit of distance in the u direction, um�Lm

� �m−�.
The “effective force” landscape seen by each piece becomes
uncorrelated on such distances, and its amplitude scales as
Fm�m2um. Hence one is in a bulk regime not dominated by
extremes, i.e., ��w� probes only motion over order one unit.
It is easy to check that an arbitrary initial condition joins the
common unique orbit after about one correlation length.

10200 10400 10600 10800 11000

-40

-20

20

w − uw − �w − uw�

w

FIG. 1. �Color online� Dynamical shocks �avalanches�: position
of a particle uw pulled by a spring, of varying equilibrium position
w, in a one-dimensional random force landscape �with forces uni-
formly distributed between 0 and 1�. The quasistatic motion shows
a succession of jumps, also called shocks. Decreasing the spring
constant �the mass� from m2=0.01 �red� over m2=0.03 �green� to
m2=0.001 �blue�, the shocks become larger and larger.
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Hence the d=0 model �see Fig. 2� suggests that starting the
quasistatic motion in u0 and driving the manifold over
w�Lm

� should then result in all orbits either converging or
having statistically identical properties. Note that if the mani-
fold is driven over more than L�, a crossover to d=0 behav-
ior and extremal statistics occurs, as studied in the next sec-
tion.

The averaged critical force, defined in Eq. �5�, should, for
d�0, go to a finite limit, with fc�m�= fc

�+Bm2−� from finite-
size scaling. This has been recently tested in the numerics
�60�. Although fc is not universal and depends on short-scale
details, one easily sees that −m�mfc�m� depends only on one
unknown scale. We note that the definition �5� coincides with
the one proposed recently as the maximum depinning force
for all configurations having the same center of mass u0 �39�.
Since ū−w is a fluctuating variable of order �L /Lm�−d/2, the
two definitions should coincide in the limit where L→�,
before m→0. The one point distribution of the critical force
is obtained from the distribution of w−u�w�, and to one loop
is identical to the one obtained in �39� provided one uses
there the massive scheme.

Let us now recall the field-theory predictions: The FRG
equation at two-loop order for the �rescaled� force correlator
are �14�

− m�m��u� = �� − 2����u� + �u���u�

−
d2

du21

2
���u� − ��0��2�

+
d2

du2 ����u�2���u� − ��0�� + ���0+�2��u�� .

�7�

=−1 describes the statics, and =1 the depinning. For the
statics, ��u� admits a potential solution �random-bond uni-

versality class� ��u�=−R��u�, with R�u� decaying to 0 as
u→�, as illustrated on Fig. 3. This implies that the integral
�0
�du��u� remains unrenormalized. However at depinning, it

flows, and no potential solution exists. For a large class of
bare disorder, the model should renormalize, as m decreases,
to the random-field fixed-point solution, �

RF
* �u�, which is

monotonically decaying and strictly positive. For the d=0
toy model discussed in the next section, this crossover is
nicely seen in our numerical simulation with decreasing m,
as is illustrated on Fig. 2. Therefore, in the following, we can
focus on the random-field universality class, i.e., short-range
correlated random forces.

III. PARTICLE IN SHORT-RANGE RANDOM-FORCE
LANDSCAPE (D=0): EXACT RESULTS

We now study the model in d=0, i.e., a particle with
equation of motion


�tu = m2�w − u� + F�u� . �8�

In the quasistatic limit where w is increased slower than any
other time scale in the problem, the zero force condition
F�u�=m2�u−w� determines u�w� for each w, starting from
some initial condition. The graphical construction of u�w� is
well known from studies of dry friction. When there are
several roots one must follow the root as indicated in Fig. 4,
where F�u� is plotted versus m2�u−w�. This results in jumps
and different paths, u↑�w� and u↓�w�, respectively, for motion
to the right �forward� and to the left �backward�. Let us call
A the area of this hysteresis loop �the area of all colored
and/or shaded regions in Fig. 4�. It is the total work of the
friction force when moving the center of the harmonic well
quasistatically once forth and back, i.e., the total dissipated
energy. The above definition of the averaged critical force
�5�, assuming the landscape statistics to be translationally
invariant and that one can replace disorder averages by trans-
lational ones over a large width M �which certainly holds if
force correlations are short-range correlated�, gives

fc = m2�w − uw�
tr

=
m2

M
	

0

M

dw�w − uw� . �9�

Hence, subtracting the two paths gives

2 4 6 8

-0.2

0.2

0.4

0.6

0.8

1∆(u)

u
m2 = 1

m2 = 0.003

∆∗(u)

FIG. 2. �Color online� �a� The measured correlator ��u� for a
particle pulled in a random potential �i.e., random-bond �RB� dis-
order� distributed uniformly in �0,1�, and rescaled such that
��0�=1 and �0

�du���u��=1. From bottom �which has
�0
�du��u��0� to top the mass decreases from m2=1 �red� to

m2=0.5 �green� to m2=0.003 �blue�, where it has �up to small cor-
rections� converged to the fixed point �*�u�. This demonstrates in
d=0 the expected crossover from random-bond to random-field dis-
order �see text�. Note that the fixed point has a cusp singularity at
u=0.

1 2 3 4 5 6

�0.2

0.2

0.4

0.6

0.8

1.0
∆(u)

u

RB

RF

FIG. 3. �Color online� Fixed-point functions �*�u� for random-
bond �RB� and random-field �RF� disorder �arbitrary scale�.
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fc ª
1

2
�fc

↑ − fc
↓�

= lim
M→�

m2

2M
	

0

M

dw�u↓�w� − u↑�w��

= lim
M→�

A

2M
, �10�

where we have used �udw=�wdu and fc
↓�0. One

can check that for m→0 this definition of fc becomes
identical to the one on a cylinder, fd, which for a
particle �d=0� is 2fd= fd

↑− fd
↓=maxu F�u�−minu F�u� with

2fdM =limm→0 A�m�. Since A depends on the starting point,
this definition holds after a complete tour, where the maxi-
mum �minimal� pinning force was selected. One can also
compare with the definition of shocks in the statics. There,
the effective potential is a continuous function of w. There-
fore, when making a jump, the integral over the force must
be zero, which amounts to the Maxwell construction of
Fig. 4.

A. Short-range correlated force: A discrete model

Let us now consider the asymptotic forward process
u�w�ªu↑�w�, defined in general as the smallest root of the
equation F�u�=m2�u−w�. The set of points �u ,F�u�� is the
lightened portion of the F�u� curve, the rest being the
shadow. If one starts in the shadow at w0 one joins at w1 the
asymptotic process for all w�w1. The difference w1−w0 is
finite for finite m, hence we will only study the asymptotic
process. Note that the area of the shadow per unit length is
the critical force.

We now study short-range correlated random force land-
scapes. In the limit of interest, m→0, the scale of jumps
becomes large, and the finite range should be unimportant.
Hence it is equivalent, and more convenient, to consider a
discrete model, u being integers. The variable w can be kept
real. One considers a discrete landscape F�u�=Fi indepen-
dently distributed with P�F�, and i integer variable. The pro-
cess u�w� is then defined on integers. Its definition is shown
in Fig. 5.

Let us compute for w��w the following joint probabili-
ties:

Pw�j,F� ª Prob„u�w� = j and Fj = F… , �11�

Pw;w��j,F; j�,F�� ª Prob„u�w� = j and Fj = F and u�w�� = j�

and Fj� = F�… . �12�

We define

H�F� = 	
F

+�

P�f�df = 1 − 	
−�

F

P�f�df . �13�

Since for u�w�= j to hold one must have all Fk�m2�k
−w� for all k� j and Fj�m2�j−w�, see Fig. 5, one has

Pw�j,F� = P�F��„m2�j − w� − F… �
k=−�

j−1

H„m2�k − w�… ,

Pw�j� = �1 − H„m2�j − w�…� �
k=−�

j−1

H„m2�k − w�… , �14�

where the first line integrated over F yields the second �and
��x� denotes the unit step function�. One easily checks that
� j=−�

j=+�Pw�j�=1.
Next for j�� j one has

Pw;w��j,F, j�,F�� = P�F��„m2�j − w� − F…�„F − m2�j − w��…

� �
k=−�

j−1

H„m2�k − w�…P�F��

��„m2�j� − w�� − F�… �
k=j+1

j�−1

H„m2�k − w��…

�15�

with the convention that for j�= j+1, the factor

�k=j+1
j�−1 H�m2�k−w���=1, and for j= j�,

Pw;w��j,F, j,F�� = ��F − F��P�F��„m2�j − w�� − F…

� �
k=−�

j−1

H„m2�k − w�… . �16�

Integrating over the forces we obtain the one-point and two-
point probability for the process u�w�. They read, in compact

F(u)

uw

u(w)

FIG. 4. �Color online� Construction of u�w� in d=0, for the
pinning force F�u� �bold black line�. The two quasistatic motions
driven to the right and to the left are indicated by red and green
arrows, and exhibit jumps �“dynamical shocks”�. The position of
the shocks in the statics is shown for comparison, based on the
Maxwell construction �equivalence of light blue and yellow areas,
both bright in black and white�. The critical force is 1 / �2M� times
the area bounded by the hull of the construction.

F(u)

m2

j w’w j’ u

FIG. 5. �Color online� Construction of u�w� in d=0 for the
forward motion in the discretized model. The vertical lines are the
force barriers, the �red� increasing lines the spring force m2�u−w�.
A particle moves from left to right, until it is stopped by a barrier
�when the lines for spring force and barrier forces intersect�.
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notations with Hk
w
ªH�m2�k−w��, and nonzero only for

j�� j,

Pw�j� = �1 − Hj
w� �

k=−�

j−1

Hk
w, �17�

Pw;w��j, j�� = �Hj
w� − Hj

w��1 − Hj�
w�� �

k=−�

j−1

Hk
w �

k=j+1

j�−1

Hk
w�

+ � j j��1 − Hj
w�� �

k=−�

j−1

Hk
w �18�

=
Pw�j�

1 − Hj
w��Hj

w� − Hj
w��1 − Hj�

w�� �
k=j+1

j�−1

Hk
w� + � j j��1 − Hj

w��� ,

�19�

with the convention that for j�= j, the factor �k=j+1
j�−1 Hk

w�=0.

Using that � j��j�1−Hj�
w���k=j+1

j�−1 Hk
w�=1 one checks the nor-

malization � j��jPw;w��j , j��= Pw�j�.

B. Continuum limit for one-point distribution

For small m the continuum limit can be taken as

Pw�j� � �1 − H„m2�j − w�…�exp�	
−�

j

dy ln H„m2�y − w�…�
= 	

−�

m2�j−w�
dfP�f�

�exp�	
−�

j

dy ln�1 − 	
−�

m2�y−w�
P�l�dl��

� 	
−�

m2�j−w�
dfP�f�exp�− 	

−�

j

dy	
−�

m2�y−w�
P�l�dl� .

�20�

The last step is justified if the result is indeed dominated by
the tail of P�f� for f negative, which is at the heart
of extremal statistics. That this is indeed true is justified
a posteriori.

The quantity m2�w−u�w���m2�w− j� is the “local,” i.e.,
fluctuating critical force, and its disorder average is
fc�m�=m2�w−u�w��. Its distribution can be obtained from
the one-point distribution Pw�j�. To rewrite Eq. �21� in a
simpler form we define

aw� �j� � a��j� ª 	
−�

m2�j−w�
P�f�df , �21�

aw�− �� ª 0. �22�

Note that aw�+��= +�. The one-point distribution can thus
be rewritten as

Pw�j�dj = e−aw�j�daw�j� . �23�

Hence one can rewrite the first moment in the form

w − u�w� = 	
−�

�

djPw�j��w − j� = 	
−�

�

djaw� �j�e−aw�j��w − j� .

�24�

This means that the quantity a has a simple exponential dis-
tribution, hence one needs to invert the relation, i.e., find j as
a function of a,

j = j�a;w� ↔ aw�j� = a , �25�

and use that a has an exponential distribution, to obtain any
average, e.g.,

�w − u�w��p = 	
0

�

dae−a�w − j�a;w��p, �26�

for any p.

C. Distribution of critical force: The different disorder classes

We now obtain the universality classes for the one-point
distribution of the process u�w�, i.e., for the distribution of
critical forces. We define b, a rescaled version of a,

b„m2�j − w�… ª m2a . �27�

Using Eq. �21�, it can be written as

b�x� � e−��x� = 	
−�

x

dy	
−�

y

P�f�df . �28�

The condition defines aw�j�. We thus need to invert this re-
lation to obtain j as a function of a. We do this for the three
main disorder classes below.

1. Gumbel class (class Ia)

The first class contains distributions P�F� with unbounded
support and decaying exponentially fast at F→−� �in some
broad sense defined below�. One then finds the Gumbel dis-
tribution for the critical force, hence we call this class the
Gumbel class.

Let us invert relation �27� and assume that the following
expansion holds at small m:

m2�j − w� = �−1�ln
1

m2 − ln a�
= − fc

0�m� −
ln a

��„− fc
0�m�…

+ ��−1���ln
1

m2� �ln a�2

2

+ ¯ , �29�

fc
0�m� ª − b−1�m2� � − �−1�ln

1

m2� , �30�

where we know that a is a fluctuating number of order 1 with
an exponential distribution, P�a�=e−a��a�. That gives the
distribution of the variable m2�j−w�. In particular since

− 	
0

�

dae−a ln a = �E = 0.577 216 . . . , �31�

we obtain the asymptotics of the �averaged� critical force as
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fc�m� = fc
0�m� −

�E

��„− fc
0�m�…

+ ¯ . �32�

For this asymptotics to hold, the ratio of successive terms has
to go to zero, equivalent to

lim
z→�

d

dz
ln���−1���z�� → 0. �33�

This defines the Gumbel class Ia, together with the fact that
the support is unbounded. An example is ln P�f�=−A�−f�� as
f →−�. Then

��x��x→�A�− x��, �34�

�−1�y� � − �y/A�1/�, �35�

− ��−1���y� �
1

�A
� y

A
�1/�−1

. �36�

Hence class-Ia condition is satisfied for any �, even for
��1. Note that preexponential algebraic factors do not
change the result. The critical force becomes

m2�u�w� − w� = m2�j − w�

= − � ln m−2

A
�1/�

+
ln a

A�� ln m−2

A
�1−1/�

+ O� �ln a�2

�ln m−2�2−1/�� . �37�

Defining the fluctuating critical force as fc�m�
=m2�w−u�w�� we find

fc�m� = fc
0�m� + cm2�m, �38�

where c=−ln a has a Gumbel distribution P�c�
=e−c exp�−e−c� on the real axis c� �−� ,��, with c̄=�E and

fc
0�m� = A−1/��ln m−2�1/�. �39�

One also finds

�m =
��−1���ln m−2�

m2 =
1

�A1/�m2�ln m−2�1−1/� . �40�

Since as confirmed below, �m�m−� is the unique scale ap-
pearing also in the second cumulant �the disorder correlator
defined in FRG�, we can identify for class Ia

m−� = m−2�ln m−2�1/�−1. �41�

Hence �=2, with additional logarithmic corrections, i.e., �
=2+ for ��1 and �=2− for ��1.

2. Class Ib: Bounded support with exponential singularity

An example of this class is

��x� = A/�x + x0��, �42�

�−1�y� = − x0 + �y/A�−1/�, �43�

b�x� � e−A/�x + x0����x + x0� , �44�

P�f� � e−A/�f + x0����f + x0� , �45�

with ��0. One sees that the condition �33� is obeyed. Hence
this is still the Gumbel class, although we introduce a dis-
tinction for convenience. A similar asymptotics can then be
performed,

m2�j − w� = − x0 + � A

ln m−2�1/�
+

1

�
A1/� ln a

�ln m−2�1+1/� .

�46�

Apart from the bound x0, the result is the same as in class I
with �→−� �in the exponents only�. Hence one finds again

fc�m� = fc

0
�m� + cm2�m, �47�

where c=−ln a has a Gumbel distribution P�c�
=e−c exp�−e−c� on the real axis c� �−� ,�� with c̄=�E and

fc
0�m� = x0 − A1/��ln m−2�−1/�. �48�

One also finds the characteristic scale �m�m−�,

�m = 1/��A−1/�m2�ln m−2�1+1/�� , �49�

hence �=2+.

3. Algebraic bounded support: Weibull class (class III)

The Weibull class, or class III, applies for a force distri-
bution with bounded support �from below� and algebraic be-
havior near the edge. An example is

P�f� = Ã�f + x0��̃��f + x0� , �50�

b�x� = A�x + x0����x + x0� , �51�

� = 2 + �̃ , �52�

A = Ã/��2 + �̃��1 + �̃�� . �53�

One must have �̃�−1, hence ��1. The box distribution
corresponds to �̃=0, i.e., �=2. Here

b−1�y� = − x0 + �y/A�1/� �54�

with y�0. Hence analogously to Eqs. �29� and �30� we find
from Eq. �27�

m2�u�w� − w� = m2�j − w� = b−1�m2a� = − x0 + �m2

A
�1/�

a1/�,

�55�

where we recall that a is a random variable with distribution
P�a�=e−a��a�. For �→� one recovers the Gumbel class.
Hence one finds for the fluctuating critical force
fc�m�=m2�u�w�−w�=m2�j−w�,

fc�m� = fc
0�m� + cm2�m, �56�

where now c=−a1/� has a Weibull distribution P�c�
=��−c��−1 exp�−�−c��� with parameter � on the negative
real axis c� �−� ,0� and

DRIVEN PARTICLE IN A RANDOM LANDSCAPE: … PHYSICAL REVIEW E 79, 051105 �2009�

051105-7



fc
0�m� = x0. �57�

The averaged critical force is

fc�m� = x0 − � 1

A
�1/�

m2/���1 +
1

�
� + ¯ , �58�

where we have used that �0
�dae−aa1/�= ��1+ 1

� �. One also
finds that

�m = A−1/�m−2�1−1/��, �59�

� = 2 −
2

�
, �60�

with 1����, hence 0���2.

4. Fréchet class (class II)

The Fréchet class, or class II, is relevant for force distri-
butions with large fluctuations, i.e., algebraic tails on an un-

bounded support. An example is P�f�� Ã�−f�−�̃��−f�,
�̃�1. One has b�x�=A�−x�−� with �= �̃−2 and

Ã=A��̃−2���̃−1�. Since ��x�=−ln A+� ln�−x� and
�−1�y��−ey/� one checks that the class-I condition �33� is
not fulfilled. Let us first study �̃�2, i.e., ��0,

m2�j − w� = − A1/�� 1

m2a
�1/�

. �61�

Hence one finds for the fluctuating critical force fc�m�
=m2�u�w�−w�=m2�j−w�,

fc�m� = cm2�m, �62�

where now c=a−1/� has a Frechet distribution P�c�
=�c−�−1 exp�−c−�� with parameter ��0 on the positive real
axis c� �0,�� and the average critical force is

fc�m� = ��1 −
1

�
�m2�m, �63�

where we have used c̄=�0
�dae−aa−1/�=��1− 1

� � and

�m = A1/�m−2�1+1/��. �64�

This corresponds to a roughness exponent

� = 2 +
2

�
. �65�

Note that for ��1 ��̃�3, ��4� the average critical force is
infinite.

We will see that the Frechet class is a bit pathologic in the
sense that ��0�=� for ��2. More generally cumulants of
order larger than � are infinite, i.e., they are associated to a
probability distribution with fat tails. This implies as usual
that these quantities are dominated by the largest events,
hence they are sensitive to how the continuous limit is con-
structed from the discrete model. For �̃�2 the integral in
Eq. �28� is divergent at its lower bound, hence undefined
without a cutoff.

5. Comparison with extremal statistics

Until now it seems that we have recovered the standard
extremal statistics classes for the distribution of the local
critical force. On one hand this is not surprising, since one
expects, qualitatively, that the critical force for two indepen-
dent consecutive regions in one dimension be the maximum
of the ones for each single region. This is certainly an exact
statement for the zero-mass case recalled in Sec. VII. Here, it
is quite consistent with the identification of m2�u�w�−w� as a
fluctuating threshold force, a fact which maybe was not ob-
vious from the start. However, note that the value of the
parameter � of the extremal statistics classes is shifted by
one from the value it takes if one models the total critical
force as the extremal one fc=mini��fc

i �� over N�m−2 inde-
pendent regions, each with its critical force fc

i distributed
with Pc�f�. In that case one has

Prob�fc � x� = �	
x

�

Pc�f�df�N

� e−N�−�
x Pc�f�df �66�

which can be written equivalently as

bc�x� ª 	
−�

x

Pc�f�df =
a

N
, �67�

where a is a random variable of order 1 with an exponential
distribution P�a�=e−a��a�. A comparison with Eq. �28�
shows that the effective critical force in an independent re-
gion should be chosen with a distribution with a tail

Pc�f� = 	
−�

f

P�f��df� �68�

for large negative f . Hence there is a first coarse graining
which transforms the tail of P�f� into the tail of Pc�f�. Then
one can think of the resulting critical force as the maximum
over N�m−2 independent random variables distributed with
Pc�f�. Applied to Weibull and Frechet classes, Eq. �68� in-
deed accounts for the shift of the index � by one.

D. Two-point probabilities and the FRG correlator �(w)

In addition to recovering the three extremal statistics
classes, which, as explained above, is not surprising if one
thinks in terms of coarse grained independent random vari-
ables, there is a second more remarkable property. We find
here that the two-point correlation

�w − u�w���w� − u�w���c

=	 djdj�Pw,w��j, j���w − j��w� − j� − �w − j��w� − j��

= m−4��w − w�� �69�

takes, for all three classes, the following form at small m:

��w� = m4�m
2 �̃�w/�m� , �70�

where the scale �m�m−� is the one identified in each case in

the previous section, and the fixed-point function �̃�w� only
depends on the universality class: it is unique and identical
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for all members of class I �Ia and Ib�, continuously depend-
ing on � �hence �� for classes II and III.

Let us now give the joint probability in the continuum
limit. From Eq. �18� and as was done to arrive to Eq. �23�
one finds for w��w

Pw;w��j, j�� = �aw� �j� − aw�
� �j��aw�

� �j��

�e−aw�j�−aw��j��+aw��j���j�� j�

+ ��j − j��aw�
� �j�e−aw�j�. �71�

Let us check the normalizations. Using that
� j
�dj�aw�

� �j��e−aw��j��=e−aw��j� one obtains �writing separately
the two contributions�

	
−�

�

dj�Pw;w��j, j�� = �aw� �j� − aw�
� �j��e−aw�j� + aw�

� �j�e−aw�j�

= Pw�j� . �72�

A similar trick yields

	
−�

�

djPw;w��j, j�� = Pw��j�� . �73�

Note also that

Pw;w�j, j�� = Pw�j���j� − j� . �74�

For all three classes one finds, starting from Eqs. �37�, �56�,
and �62�, respectively,

j − w = −
fc

0�m�
m2 − �mc�a� , �75�

with either c�a�=−ln a �class I�, c�a�=−a1/� �class III�, or
c�a�=a−1/� �class II�. Since the constant piece in Eq. �75�
disappears when computing the connected moments, to com-
pute � defined in Eq. �69� we can simply write

j − w = − �mc�a�, j� − w� = − �mc�a�� �76�

and to obtain the rescaled function, �̃, we can further set
m=�m=1 and write

�̃�w − w�� =	 djdj�Pw,w��j, j��c„aw�j�…c„aw��j��… .

�77�

1. Calculation of �(w) for class I

We define a1ªaw�j�, a2ªaw��j�, a3ªaw��j��. Given the
previous remark to compute the cumulants we can set

j − w = ln a1, j − w� = ln a2, �78�

j� − w� = ln a3, a2/a1 = e−W, �79�

where we denote W=w�−w�0. The joint probability �71�
then reads

Pw;w��j, j��djdj� = da1�1 − e−W�da3e−a1�1−e−W�−a3��j�� j�

+ ��j� − j�dj�e−Wda1e−a1. �80�

This yields the second moment

�w − j��w� − j��
c

= �1 − e−W�	
0

�

da1	
a1e−W

�

da3

�exp�− a1�1 − e−W� − a3�ln a1 ln a3

+ e−W�Ww − j + �w − j�2� − �w − j�2
.

�81�

Note the integration interval for a3 which corresponds to
j�� j using Eq. �79�. We recall that

w − j = − 	
0

�

dae−a ln a = �E, �82�

�w − j�2 = 	
0

�

dae−a�ln a�2 = �E
2 +

�2

6
. �83�

Thus we obtain

�̃�W� = �1 − e−W�	
0

�

da1e−a1�1−e−W� ln a1

� 	
a1e−W

�

da3e−a3 ln a3 + e−W��E
2 +

�2

6
+ W�E� − �E

2 .

�84�

The calculation is performed in Appendix B. The final result
for the fixed-point function of class I is

�̃�w� =
w2

2
+ Li2�1 − ew� +

�2

6
�85�

where Lin�z�=�k=1
� zk /kn. One can also use the alternative for-

mula �B5�. Another equivalent compact expression for the
result is

�̃�w� = �
n=1

�
1 + nw

n2 e−nw. �86�

A numerical test is performed in Sec. V, see Fig. 11.
The behavior of the fixed-point function at small w�0 is

�̃�w� =
�2

6
− w +

w2

4
−

w3

36
+

w5

3600
−

w7

211 680
+ O�w9� ,

hence we confirm that there is a cusp and a power series
expansion in �w�. The behavior at large w is easier obtained
from Eq. �86� and reads

�̃�w� = �w + 1�e−w +
1

4
�2w + 1�e−2w +

1

9
�3w + 1�e−3w

+ O�e−4w� . �87�

It is characteristic of short-ranged correlations in the force
with an exponential decay.
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2. Calculation of �(w) for class III

As for class I, we define a1=aw�j�, a2=aw��j�, a3
=aw��j�� with �attention: j is ahead of w�

j − w = a1
1/�, �88�

j − w� = a2
1/�, �89�

j� − w� = a3
1/�. �90�

One must distinguish the cases j�w� �then j�� j is equiva-
lent to a3�a2 and W=w�−w=a1

1/�−a2
1/�� and j�w�, in

which case a2=0. There are thus two pieces for the part with
j�� j,

d1 ª �j − w��j� − w�� � j�=j

= 	
w

w�
dj

da1

dj
e−a1	

0

�

da3e−a3�a1a3�1/�

+ 	
w�

�

dj
d�a1 − a2�

dj
e−�a1−a2�	

a2

�

e−a3�a1a3�1/�. �91�

In the first integral the integration bounds over a1 is from 0
to W� and in the second the relation w�−w=a1

1/�−a2
1/� holds.

Hence one obtains

d1 = ��1 +
1

�
�	

0

W�

da1a1
1/�e−a1

+ 	
W�

�

da1�1 −
da2

da1
�a1

1/�e−a1+a2��1 +
1

�
,a2� . �92�

The second contribution �j= j�� is

d2 ª �j − w��j� − w�� � j�=j

= 	
w�

�

dj
da2

dj
e−a1�a1a2�1/�

= 	
W�

�

da1
da2

da1
e−a1�a1a2�1/�. �93�

One has for the disorder correlator

�̃�W� = d1 + d2 − �	
0

�

da1e−a1a1
1/��2

. �94�

Using a2= �a1
1/�−W��, da2 /da1= �1−wa1

−1/���−1, and the
variable y=a2

1/�, a1
1/�=y+W, one finds

�̃�W� = − ��1 +
1

�
���1 +

1

�
,W��

+ �	
0

�

dy�y + W�e−�y + W��

��y� + ey���1 +
1

�
,y����y + W��−1 − y�−1�� .

�95�

Integration by part of the last term finally yields

�̃�w� = − ��1 +
1

�
���1 +

1

�
,w�� + w��1 +

1

�
�e−w�

+ 	
0

�

dye−�y + w��+y���1 +
1

�
,y�� . �96�

We recall that

��a,x� = 	
x

�

dzza−1e−z. �97�

Hence we find a fixed-point function continuously dependent
on �, and �=2−2 /� yielding a unique form for each value of
0���2.

The value at w=0 has a simple expression,

�̃�0� = ��1 +
2

�
� − ��1 +

1

�
�2

. �98�

We find that the function �̃�w� has a cusp with

− ���0+� =

��1 +
1

�
�

�
. �99�

Since there are a priori w� terms �we recall ��1�, we want
to understand at which order the expansion in �w� breaks
down.

More explicit expressions can be obtained in special
cases. For the box distribution, i.e., �=2, we find

�̃�w� =
e−w2

4w
�2w − ew2���2w2 + 1�erfc�w� + ���

+
1

2
���we−w2

− ��3

2
,w2�� , �100�

which has a power series expansion in �w� around w=0,

�̃�w� = �1 −
�

4
� −

��w

4
+

w2

3
−

��w3

24
−

w4

30
+

��w5

120
+

w6

210

−
��w7

672
−

w8

1512
+

��w9

4320
+

w10

11880
+ O�w11� . �101�

Equation �100� together with Eq. �70� is checked numerically
in Sec. V, see Fig. 11.

However for � noninteger the situation is more compli-
cated. Despite the presence of w� terms �we recall ��1�, the
one-sided second derivative at ���0+� seems to exists. Nu-
merically one finds that for � noninteger, but close to 1, e.g.,
�=3 /2, the third derivative at 0 exists, but does not go to
zero with a finite slope. Analytically, one obtains an expan-
sion around �=1, as

�̃�w� = �0�w� + �� − 1��1�w� + O�� − 1�2 �102�

with

�0�w� = e−w, �103�
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�1�w� = �w − 2���0,w� + e−w�− �w + 2�log�w� − 4� ,

�104�

with the incomplete � function defined in Eq. �97�. Note that

�w
2�1�w� = − e−w�w log�w� + 1�

and the Taylor expansion of Eq. �104� around 0 is then

�1�w� = �− 4 + 2�� + �2 − ��w −
w2

2
+ �11

36
−

ln�w�
6

�w3

+ � ln�w�
12

−
13

144
�w4 + O�w5� , �105�

whose logarithmic part can be summed up as

�1�w� = �2 − w − e−w�w + 2��ln�w� + analytic in �w� .
�106�

These expansions confirms that for the Weibull class at non-
integer � the second derivative at 0+, ���0+�, exists, but not
the third one.

Finally let us note that if �m
III is scaled as � one should

recover class I from the large-� limit of class III, i.e., one can
indeed check from Eq. �79� and �109� that

lim�→� �
2�̃III,��w /��= �̃I�w�. �The indices refer to the

class.� An example of the limit procedure is given below.

3. Calculation of �(w) for class II (Frechet)

We define again a1=aw�j�, a2=aw��j�, a3=aw��j�� with

j − w = − a1
−1/�, �107�

j − w� = − a2
−1/�, �108�

j� − w� = − a3
−1/�. �109�

One sees that j can only vary in the interval �−� ,w�, and that
j�� j is equivalent to a3�a2. As for Weibull, there are two
pieces,

d1 ª �j − w��j� − w�� � j�=j

= 	
−�

w

dj
d�a1 − a2�

dj
e−�a1−a2�	

a2

�

da3e−a3�a1a3�−1/�,

�110�

where the relation W=w�−w=a2
−1/�−a1

−1/� holds. This yields

d1 = 	
0

�

da1�1 −
da2

da1
�a1

−1/�e−a1+a2��1 −
1

�
,a2� .

�111�

The second contribution is

d2 ª �j − w��j� − w�� � j�=j

= 	
−�

w

dj
da2

dj
e−a1�a1a2�−1/�

= 	
0

�

da1
da2

da1
e−a1�a1a2�−1/�. �112�

One has for the disorder correlator

�̃�W� = d1 + d2 − �	
0

�

da1e−a1a1
−1/��2

. �113�

Using the variable y=a1
−1/�, a2

−1/�=y+W, one finds

�̃�W� = �	
0

�

dyy�y + W�−�e−y−�

+ �	
0

�

dyy�y−1−� − �y + W�−1−��e−y−�+�y + W�−�

���1 −
1

�
,�y + W�−�� − ��1 −

1

�
�2

. �114�

As for the Weibull class, see Eq. �96�, we can integrate by
part the second term into

− lim�→� 	
0

�

dye−y−�+�y + W�−� d

dy
�y��1 −

1

�
,�y + W�−���

+ ���1 −
1

�
� , �115�

where the last term comes from the upper bound in the par-
tial integration, after putting y→�→� there. Rewriting it as
�0
�dy��1−1 /��, and using the fact that the first term in Eq.

�114� cancels, we arrive at the simple final expression for the
Frechet class,

�̃�w� = − ��1 −
1

�
�2

+ 	
0

�

dy���1 −
1

�
�

− e−y−�+�y + w�−�
��1 −

1

�
,�y + w�−��� . �116�

We find a fixed-point function, which depends continuously
on �, hence on �=2+2 /� with a unique form for each value
of �, in the domain 0���2.

We can obtain the small-w behavior easily from Eq. �114�.
The value at zero,

�̃�0� = ��1 −
2

�
� − ��1 −

1

�
�2

, �117�

is found consistent with the results from the previous section
on the distribution of the critical force,

�w − u�w��n = �m
n��1 −

n

�
� . �118�

One sees that �̃�0� is defined for ��2 and diverges as
�→2+. As discussed in the previous section this is because
in the Frechet class the distribution of the critical force has
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algebraic tails and an infinite nth moment for �	n. We thus
consider ��2. The fixed-point function has a cusp, with
from Eq. �116�,

− �̃��0+� =
��1 − 1/��

�
, �119�

and a well-defined Taylor expansion in �w�,

�̃�w� = ��� − 2

�
� − ��1 −

1

�
�2

+

��−
1

�
�w

�2 +
�w2

4� + 2

−

�� + 1��� 1

�
�w3

36� + 24
+

�3��3 +
2

�
�w4

48�2��4� + 9� + 9�

+

�2�� + 1���2 − 4���2 +
3

�
�w5

240�15�2 + 32� + 16�
+ O�w6� . �120�

The large-w behavior of the fixed-point function is quite dif-

ferent from the other classes. Indeed �̃�w� decays to zero
rather slowly for large w. This can be seen by writing

�̃�w� = t1�w� + t2�w� − ��1 −
1

�
�2

,

t1�w� = 	
0

�

dye−y−�+�y + w�−�	
0

�y + w�−�

dtt−1/�e−t,

t2�w� = 	
0

�

dy��1 −
1

�
��1 − e−y−�+�y + w�−�

� . �121�

The leading term for large w comes from t1�w�, via a series
of approximations,

t1�w� � 	
0

�

dye−y−�+�y + w�−�	
0

�y + w�−�

dtt−1/�

=
�

� − 1
	

0

�

dye−y−�+�y + w�−�
�w + y�1−�

�
�

� − 1
	

0

�

dy�w + y�1−� =
w2−��

�� − 2��� − 1�
,

�122�

whereas t2�w� is of order 1 /w� plus a constant, since one can
simply expand the exponential function for large w. For

�=3 the function �̃�w� and the asymptotics Eq. �122� are
plotted on Fig. 6.

IV. AVALANCHE-SIZE AND WAITING-TIME
DISTRIBUTIONS

A. Avalanche-size distribution

Successive avalanches, or jumps, occur at a discrete set of
w=wi such that u�wi

−�= ji and u�wi
+�= ji+si, where s=si�0 is

the size of the avalanche. The waiting time between consecu-
tive avalanches is denoted W=wi−wi−1. It is not properly a
time, but we will term it here loosely waiting time since for
a driving with a constant velocity it is the waiting time
tw=W /v, with here v=0+ �in that limit the jump time is neg-
ligibly shorter�. Here we compute the joint distribution of
avalanche sizes and waiting times. In Sec. V we discuss an
algorithm to generate the sequence of avalanches and the
Markov-chain property.

There are two useful probabilities for which the general
expressions for the discrete model are easy to write. The first
is, for w��w,

Pw�j ;w�� ª Prob�u�w� = j and next avalanche is in �w�,��� .

�123�

When u�w�= j the next avalanche occurs at w��w such that
m2�j−w��=Fj. Thus to realize w��w� we need
Fj�m2�j−w��. Hence one has

Pw�j ;w�� = �1 − H„m2�j − w��…� �
k=−�

j−1

H„m2�k − w�… .

�124�

For w=w�, Pw�j ;w�= Pw�j� defined in Eq. �17�. Of interest is
the differential waiting-time distribution

Pw�w��dw� = − dw��w� �
j=−�

�

Pw�j ;w��

= Prob�given w, the next avalanche is in

�w�,w� + dw��� . �125�

The joint �integrated� probability is more involved,

Pw�j,w�,S�dw� ª Prob�u�w� = j and next avalanche is in

�w�,w� + dw�� and of size s� S� .

�126�

One has

10 20 30 40 50
w

0.2

0.4

0.6

0.8

�

FIG. 6. �Color online� �̃�w� from Eq. �116� for �=3 �bold�. One
clearly sees the long tail for w→�. The asymptotic behavior for
large w from Eq. �122� is shown �dashed and/or red� as the small-w
expansion �blue and/or dashed�.
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Pw�j,w�,S� = �
p=1

S

H„m2�p + j − w��…„− �w�Pw�j ;w��…

�127�

and, of course, Pw�j ,w� ,S=0�=−�w�Pw�j ;w��, i.e., the prob-
ability that u�w�= j and that the next avalanche occurs at w�
�per unit dw��. Of particular interest is

Pw�w�,s� S� ª �
j

Pw�j,w�,S�

= Prob�next avalanche is in �w�,w�

+ dw�� and of size s� S� �128�

This is illustrated in Fig. 7.
We now consider the limit m→0 in which the continuum

limit can be used, and extract the distributions of waiting
times and avalanche sizes. We find that they depend on the
same single scale �m as defined in the previous sections. The
waiting-time distribution is denoted below P�w� �and some-
times P�W��, and has thus the scaling form

P�w� = �m
−1P̃�w/�m� . �129�

However, to simplify notations, unless specified, we drop

below the tilde on P̃ and formally replace �m→1 �formally,
since all statements below are about scaling forms in the
limit m→0�. When no confusion is possible we use the sym-
bol w for either the argument of u�w� and the waiting time
w=wi−wi−1, and use W for the waiting time when confusion
is possible. Similarly the avalanche-size distribution is
loosely noted with the same symbol,

P�s� = �m
−1P̃�s/�m� �130�

and we perform the same simplification in notations, and
similarly for the joint distribution. The dependence on �m can
be restored by replacing in the final formulas

j →
j

�m
, �131�

w →
w

�m
, s →

s

�m
, �132�

similarly for S and W, and correcting the normalizations of
probabilities to 1.

B. Waiting-time distribution

Using the method introduced in the previous section, see
especially Eq. �21�ff, one finds that the continuum limit for
the probability Pw�j ;w�� is

Pw�j ;w��dj = daw��j�e−aw�j�, �133�

and we use again the notation a1=aw�j� and a2=aw��j�.

1. Class I (Gumbel)

We recall Eq. �75� for class I,

j − w = − fc
0 + ln a1,

j − w� = − fc
0 + ln a2, �134�

where fc
0 is a nonfluctuating constant, and as in Eq. �79�

a2=e−Wa1. Thus one finds

Pw�j ;w��dj = e−Wda1e−a1. �135�

Integrating over a1 in �0,�� one obtains

Pw�w�� = ��w� − w�ew−w�. �136�

From Eq. �136� we can infer the distribution P�W� of waiting
times W. Since the probability that a uniformly chosen w on
the real axis falls in an interval of size W is
WP�W� /�dWWP�W� �see Fig. 8�, and that then the probabil-
ity of of w�−w is uniform, i.e., ��0�w�−w�W� /W, multi-
plying the two expressions one finds the general relation

	
w�−w

�

dWP�W�

	
0

�

dWWP�W�
= Pw�w�� . �137�

This is true only in the small-m limit �because of uniform
measure assumption�. For any member of class I we find the
distribution of ”waiting time” W �restoring the dependence
on �m�,

P�W� = �m
−1e−W/�m. �138�

2. Class III (Weibull)

Let us consider now class III. One has, following the no-
tation in Sec. III D 2,

j − w = − fc
0 + a1

1/�, �139�

j − w� = − fc
0 + a2

1/�. �140�

Using the variable y�0 such that a2
1/�=y and a1

1/�=y+W one
now finds from Eq. �133�

F(u)

uw’w

j+sj
s

FIG. 7. �Color online� Geometrical construction for the size of
an avalanche

w’
w

W

FIG. 8. The probability Pw�w�� to have a point w in the interval
of size W preceding w�.
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Pw�j ;w��dj = �y�−1e−�y + W��dy . �141�

Integrating with respect to y, taking −�w� and integrating by
part we obtain

Pw�w�� = ��� − 1�	
0

�

dyy�−2e−�y + w� − w��. �142�

We recall that ��1, hence the integral is always convergent.
From Eq. �137� we obtain


W�−1 = Pw�w� = ���2 −
1

�
� �143�

and, taking −�w� on both sides of Eq. �137� we obtain for
class III

P�W� =
��� − 1�

��2 −
1

�
�	0

�

dyy�−2�y + W��−1e−�y + W��.

�144�

If ��2 it can be integrated by part into

P�W� =
�� − 1��� − 2�

��2 −
1

�
� 	

0

�

dyy�−3e−�y + W��. �145�

For completeness let us give the result for �=2, which cor-
responds to a box distribution for the forces

Pw�w�� = �� erfc�W� , �146�

P�W� =
2

��
e−W2

��W� , �147�

which is a simple one-sided Gaussian.

3. Class II (Fréchet)

Let us consider now class II �Frechet�. One has

j − w = − a1
−1/�, �148�

j − w� = − a2
−1/�. �149�

Using the variable y�0 such that a1
−1/�=y and a2

−1/�=y+W
one now finds from Eq. �133�

Pw�j ;w��dj = ��y + W�−�−1e−y−�
dy . �150�

Integrating with respect to y, taking −�w� we obtain

Pw�w�� = ��� + 1�	
0

� dy

�y + W�2+�e−y−�
. �151�

We recall that ��0 hence the integral is always convergent.
From Eq. �137� we obtain


W�−1 = Pw�w� = ���2 +
1

�
� . �152�

Deriving again Eq. �137� with respect to W, we obtain

P�W� =
�� + 1��� + 2�

��2 +
1

�
� 	

0

� dy

�y + W�3+�e−y−�
. �153�

One easily checks that Eq. �153� is correctly normalized.

C. Joint avalanche-size and waiting-time distribution

The continuum limit of Eq. �127� can be written as

Pw�j,w�,S�dj = �− �w��da2e−a1��e−a3+a2, �154�

where we use the same notations aw�j�=a1, aw��j�=a2 as
above and in addition aw��j�= j+S�=a3. We remind the
reader that in order to include �m, S is rescaled as j and w.

1. Class I (Gumbel)

Consider now class I. In addition to Eq. �134� one has

j + S − w� = − fc
0 + ln a3. �155�

Hence we have a2=e−Wa1 and a3=e−W−Sa1 where

Pw�j,w�,S�dj = �− �w�e
−W�da1e−a1��e−a1e−W�eS−1�

= e−Wda1 exp„− a1�1 + e−W�eS − 1��… .

�156�

Integrating over j and a1, respectively, we obtain the joint
distribution

Pw�w�,s� S� = ��w� − w�
1

ew�−w + eS − 1
. �157�

Again this is the probability that if one observes the system
at w, the next avalanche occurs at w� and has size s�S. This
allows one to find the joint probability P+�W ,s�S� that
wn+1−wn=W and the next avalanche is sn+1�S �see Appen-
dix E for further notations and definitions�. Indeed one has,
by the same reasoning as above,1

	
w�−w

�

dWP+�W,s� S�

	
0

�

dWWP+�W,0�
= Pw�w�,s� S� . �158�

This yields for class I

P+�W,s� S� =
eW

�eW + eS − 1�2 . �159�

Integrating over W this yields the cumulative joint waiting-
time and avalanche-size distribution for class I,

P�w�W,s� S� =
1

exp�W� + exp�S� − 1
. �160�

Setting W=0 gives the �rescaled� avalanche-size distribution
for class I

1Note one could also imagine to divide by �0
�dWWP+�W ,s�S�,

but this is wrong.
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P�s� = e−s, P�s� S� = e−S. �161�

Setting S=0, and deriving with respect to W reproduces the
waiting-time distribution �138�. We thus obtain that the ava-
lanche exponent, such that P�s��s−� at small 1�s��m, is
here �=0. We can give the lowest moments,


ws� =
�2

6
� 1.64493, �162�


w� = 
s� = 1, �163�


w2� = 
s2� = 2, �164�

in units of �m. We also note that the relation


s2�

s�

= − 2���0+� �165�

is obeyed, using �̃��0+�=−1 from Eq. �87�. This relation be-
tween the cusp and the second moment holds quite generally
�61� and is used here as a useful check.

2. Class III (Weibull)

Consider now class III, i.e., Eq. �140� and

j + S − w� = − fc
0 + a3

1/�. �166�

This leads to

Pw�j,w�,S�dj = �− �w�

daw��j�

dj
dje−aw�j��e−aw��j+S�+aw��j�.

�167�

Now setting as before y=a2
1/�= j−w�, the only derivative in

the bracket to be taken is of the variable y, i.e., −�w�y=1. In
short hand this gives

Pw�j,w�,S�dj = − �w��y�−1dye−�y + W��−�y + S��+y�

= ��� − 1�y�−2dye−�y + W��−�y + S��+y�.

�168�

Integrating over y �i.e., j� it yields

Pw�w�,s� S� = ��� − 1�	
0

�

dyy�−2e−�y + W��−�y + S��+y�.

�169�

The final result for the joint probability for class III takes the
form

P+�W,s� S� =
�

��1 −
1

�
� �− �W�	

0

�

dy�y�−2

�e−�y + W��−�y + S��+y�� . �170�

Integrating over W yields the �rescaled� cumulative distribu-
tion for class III,

P�w�W,s� S� =
�

��1 −
1

�
�	0

�

dyy�−2e−�y + W��−�y + S��+y�.

�171�

Setting W=0, we obtain the avalanche-size distribution,

P�s� S� =
�

��1 −
1

�
�	0

�

dyy�−2e−�y + S��. �172�

On the other hand, setting S=0 in Eq. �171� gives back the
waiting-time distribution �144�.

Let us comment on these results. Since Eq. �172� can be
Taylor expanded in S around S=0, it is clear that for class III
also the avalanche exponent is again �=0. For large S, the
decay of Eq. �172� is P�s�S�� P�S��exp�−S��, i.e., a
stretched exponent decay with exponent �=�. Next, one
checks that the general relation involving the cusp is obeyed,


s2�

s�

=

��2 +
1

�
�

�
�m = − 2���0+� , �173�

using Eq. �99�, a useful check on our calculations.
One can also obtain simple expressions for the lowest

moments �in units of �m�,


s� = 
w� =
1

���2 −
1

�
� , �174�


sw� =

��1 +
1

�
�H−1/�

��−
1

�
� �175�

as a function of the harmonic number Hn=�k=1
n 1 /k, i.e.,

H−1/�ª�E+��1−1 /��, ��x�ª���x� /��x�. From these one
can construct a fully universal dimensionless ratio,


sw�

s�
w�

= −
��� − 1�2H−1/�

�2 sin��
�
� . �176�

Finally one can check that for �→�, one recovers class I
distribution �160�. More precisely

lim
�→�

P�w�W/�,s� S/��

= lim
�→�

1

��2 −
1

�
�	0

�

dxx−1/�exp�− x��1 +
W

�x1/���

+ �1 +
S

�x1/��� − 1�� �177�
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=	
0

�

dx exp�− x�eW + eS − 1�� = �160� , �178�

where we have used x=y� as variable and
lim�→��1+W /���=exp�W� and that the factors of x1/� could
be dropped.

3. Class II (Fréchet)

Consider now class II, i.e., Eq. �140� and

j + S − w� = − �ma3
−1/�, �179�

hence S=a2
−1/�−a3

−1/�=y+W−a3
−1/�. This leads to

Pw�j,w�,S�dj = �− �w���y + W�−�−1dye−y−�
�

� e�y + W�−�−�y + W − S�−�

= ��� + 1��y + W�−�−2dye−y−�

� e�y + W�−�−�y + W − S�−�
. �180�

The domain of integration depends on whether W�S or S
�W, and can be expressed as

Pw�w�,s� S� = ��� + 1�	
max�0,S−W�

� dy

�y + W��+2

�e−y−�+�y + W�−�−�y + W − S�−�
�181�

=��� + 1�	
max�W,S�

� dy

y�+2

�e−�y − W�−�−�y − S�−�+y−�
. �182�

This translates with the same arguments as for Eq. �171� into

P�w�W,s� S� =

	
max�W,S�

� dy

y�+2e−�y − W�−�−�y − S�−�+y−�

	
0

� dy

y�+2e−y−�

.

�183�

As for the Weibull and Gumbel universality classes, this ex-
pression is symmetric in S and W. We therefore conclude that
for all three classes

P�w� = P�s� . �184�

This property is proved with slightly more general argument
in Appendix D. It is of course valid only for the rescaled
distributions in the limit m→0 in the sense described above
�at the level of the discrete model w is a continuous variable
while s is discrete�.

The resulting distribution of �rescaled� avalanche size
thus reads

P�s� =
�� + 1��� + 2�

��2 +
1

�
� 	

0

� dy

�y + s�3+�e−y−�
�185�

with �in units of �m�


s�−1 = ���2 +
1

�
� , �186�


s2�/
s� =
− 2��− 1/��

�2 = − 2���0+� , �187�

the last equality being a check, using Eq. �119�. Note that
P�s� has power-law decay for large s, i.e., P�s��s−�2+��. The
avalanche exponent however is still �=0, since it is related to
small avalanches �i.e., s��m�. The Frechet class yields to a
cutoff for large avalanches �i.e., s��m� which is itself a
power law.

4. Local fluctuations of the area of the hysteresis loop

Figure 9 illustrates a typical hysteresis loop for uncorre-
lated random force landscape, for convenience assumed to
have a symmetric distribution P�−f�= P�f�. The plot shows
u�w� for the forward motion with m2
w−u�= fc�0 �disorder
or translational averages� and the backward motion
m2
u−w�= fc. Both curves u�w� fluctuate around w� fc

0 /m2,
and the enclosed area A of the hysteresis loop exhibits a

uniform part Ā=2�fc
0�m��w, computed in Sec. III C for each

class, plus a fluctuating part Ã,

A = Ā + Ã, Ã = m2�
i

wisi. �188�

It has a geometrical interpretation as the area of the yellow
and/or shaded region. Its average value per unit length over a
large sample w� �0,M� is

1

M

Ã� = m2 
ws�


s�
, �189�

since the number of avalanches is �i=N, �isi=M hence

s�=M /N. Note in passing that one has also �iwi=M, hence

−2

u

w

forward motion

backward motion

m2 f
c
0

FIG. 9. �Color online� The plot shows u�w� for the forward
motion with m2
w−u�= fc, and the backward motion with
m2
u−w�= fc. Both trajectories are indicated with arrows. The
world line u�w� fluctuates around w� fc

0m−2. These fluctuations
have a geometrical interpretation as the yellow and/or shaded re-
gion, whose area is related to the expectation 
ws�.
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s�= 
w�, i.e., the first moments of s and w are always equal.
�We neglect boundary contributions which for uncorrelated
disorder scale subdominantly.� Similarly one can consider
the moments of the local hysteresis area,

1

M
�

i

�wisi�p =

�ws�p�


s�
. �190�

They can be obtained from the moments of the variable
a=ws. Hence it is useful to compute the distribution of this
variable for the three classes. This is performed in Appendix
D.

Let us give the result for the �rescaled� distribution of the
Gumbel class,

P�a� A� = 	
0

�

dx
ex

�ex + eA/x − 1�2 = 	
1

�

dy
1

�y + eA/ln�y� − 1�2 ,

�191�

from which we give some moments,


a� = 1.64493, 
a2� = 18.3995,


a3� = 547.343, 
a4� = 30 764.6, �192�

measured in units of �m
2 .

V. NUMERICS FOR THE TOY MODEL

A. Basic definitions

In this section we study numerically the discrete model of
the last section. We consider the following four different dis-
order distributions:

�i� Box:

P1�f� = 1 if f � �0,1�, and 0 else. �193�

�ii� Exponential:

P2�f� = exp�f� if f � 0 and 0 else. �194�

�iii� Random bond �RB�: Short-ranged correlated poten-
tial. The resulting force at site i is f i=ei−ei+1 where the
energies ei are uncorrelated random variables distributed
with the box distribution P1�e�. We call this distribution
P3�f�.

�iv� Class III with �=3:

P4�f� = 2f��0	 f 	 1� . �195�

Note that power-law-distributed forces can be generated by
defining fªx�, with x� �0,1� uniformly distributed. This
yields

P�f� =
1

�
f1/�−1��0	 f 	 1� , �196�

with �=1 /2 for Eq. �195�.
We integrate numerically the equation of movement �8�,

first at 
=0. This is the discrete model defined in Sec. III A.
In practice, for given w, we move the particle as long as the

0.5 1.0 1.5 2.0 2.5

0.05

0.10

0.15

0.20

∆̃(u)

u

P (f) = Θ(0 ≤ f ≤ 1)

which

FIG. 10. �Color online� Numerically calculated �̃�u� as a func-
tion of u �red, fat� for the box distribution P�f�=��f���1− f�, and
comparison with analytical result �black, dashed� from Eq. �100�;
Ã=1, �̃=0, A=1 /2, �m=�2 /m, m2=10−5; there is no adjustable
parameter.

2 4 6 8

0.5

1.0

1.5

∆̃(u)

u

P (f) = exp(f) Θ(f)

FIG. 11. �Color online� �̃�u� as a function of u for the exponen-
tial distribution �red, fat�, and comparison with analytical result
from Eq. �85� �black, dashed�; �m

−1=m2=0.003, no adjustable
parameter.

200 400 600 800 1000 1200

0.0001

0.0002

0.0003

0.0004

∆(u)

u

P (f) = 2f Θ(0 ≤ f ≤ 1)

FIG. 12. �Color online� ��u� vs u for �=3 �Weibull class�;
m2=0.0001. No adjustable parameter. Red is data with error bars.
Blue is the analytic solution �96� for �=3. The other parameters

used in Eq. �50�ff are Ã=1 /� and �̃= 1
� −1. We have chosen �

=1 /2 as an example, hence �̃=1, �=3, Ã=2, A= 1
3 . We use m2

=0.0001, with 107 disorder points. One finds fc /m2: −599.8 �numer-
ics� versus −597.79 �analytic�. The parameter free numerical result
for ��u� is compared with the analytical one, and found in excellent
agreement.
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force, i.e., the right-hand side of Eq. �8� is positive. The point
at which we stop defines u�w�. We then update w→w+1.
This is an approximation to the process defined in Sec. III A,
but since jumps as well as waiting times diverge when
m→0, the scaling limit is the same. A second algorithm,
described in Appendix C, was used to independently com-
pute P�w� and P�s� �not shown�, and check the present re-
sults.

B. �(w)

We have shown on Figs. 10–12 comparisons between the
numerically computed functions ��u� and the analytical pre-
dictions. The corresponding analytical results are referenced
in the corresponding captions. Hence there is no adjustable
parameter in Figs. 10–12 and the agreement is excellent.

A general important question at depinning is whether the
random bond class �i.e., uncorrelated potentials� flows to the
random field one �uncorrelated forces�. This appears clearly
in Fig. 13, where we plot the rescaled �as explained in the
caption� ��u�, for the three disorders P1�f�, P2�f�, and P3�f�,
defined in Eq. �193� ff. The crossover as the mass decreases
from RB disorder to the random-force �RF� disorder can also
nicely be seen in our simulations, presented on Fig. 2. One
expects that the random short-ranged energy model, i.e., f i
=ei−ei+1 with ei distributed with PRB�e� should flow to the
random-force model with P�f�=�ePRB�f +e�PRB�e�, i.e., the
convolution of PRB�e� and PRB�−e�. This is because the rare
large forces are isolated and become uncorrelated. This pre-
dicts that the box distribution for e should flow to the �=3
class III.

We have seen on Fig. 13 that the shapes of the correlator
functions ��u� �i.e., their rescaled form as explained in the
caption� are rather similar for the various universality
classes, while their unrescaled forms are very different.
These rescaled forms obtained from the analytical calcula-
tions are compared in Fig. 14.

C. Shocks and avalanches

In Fig. 1 we have shown the avalanches, also called dy-
namical shocks: As a function of w, we plot w−uw �minus its
average�, for different masses. First consider the smallest
mass, m2=0.03. We see that w−uw is growing linearly with
w, before it jumps. The linear parts are those, at which the
particle is localized by a large disorder force, before jumping
�in zero time at 
v=0� to a new position �vertical parts�.
When decreasing the mass, we see that the linear parts, i.e.,
the “time” �i.e., distance in w� between jumps, as well as the
jumps itself become larger, while sharing parts of their tra-
jectories. This can be interpreted as merging of the �dynami-
cal� shocks.

In Fig. 15 we show the avalanche-size and waiting-time
distributions for P�f� being the box distribution. It clearly
shows that avalanche-size and waiting-time distributions are

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1
Y (u)

u

FIG. 13. �Color online� Rescaled disorder correlator: The func-
tion Y�u� is the rescaled version of ��u� such that Y�0�=1 and
�uY�u�=1. The data is the same as on Figs. 10 and 11 with in
addition RB disorder �i.e., random potential�: Blue is the box dis-
tribution in �0,1�, red the exponential, green is RB. This shows that
for m=0.003 the different microscopic disorders yield very similar
rescaled correlators, although the unrescaled ones are different. For
the difference between rescaled disorders see Fig. 14.
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-0.02

-0.015

-0.01

-0.005

0.005

0.01

Y (u)

u

FIG. 14. �Color online� Comparison of the analytical results for
the various classes. The function Y�u� is the rescaled version of
��u� such that Y�0�=1 and �u�0Y�u�=1. Plotted here are the
�small� differences YI�x�−YIII,2�x� �red� and YI�x�−YIII,3�x� �blue�.
The index refers to class, and �. This explains why the various
classes are very close on Fig. 13.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0
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1.0

1.2
P (W ), P (S)

W,S

P (f) = Θ(0 ≤ f ≤ 1)

FIG. 15. �Color online� P�W� �orange dots� and P�S� �green
dots� as a function of W and S, respectively, for the box distribution
P�f�=��f���1− f�, and comparison with analytical result �black,

dashed� from Eq. �100�; Ã=1, �̃=0, A=1 /2, �m=�2 /m, m2=10−5;
there is no adjustable parameter. One sees that the two distributions
are identical, with P�W� plotted on top of P�S�. However for small
avalanche sizes S, the numerics has not yet converged against the
analytical result, i.e., finite-size corrections are present and visible
on the plot.
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identical, as follows for all disorder classes from Eq. �D3�.
Moreover, the result is in agreement with the parameter free
prediction of Eq. �172�, using �m defined in Eq. �59�.

D. Finite velocity

In this section, we consider the equation of motion at
finite velocity v, or rather at finite 
v, since the latter is the
parameter entering all equations.

The algorithm for finite 
v is as follows: We generalize
the position ut�u�wt� of the point to now take noninteger
values. It follows the Langevin equation



d

dt
ut = f �ut�

+ m2�ut − wt� �197�

where

�u� ª largest integer	 u . �198�

Condition �198� reflects that the disorder only changes at
discrete values of u.

In practice, we discretize �197� with a step size �t
=1 /100, integrating this discretized equation of motion in
time following the Itô scheme, and using wt=vt,


�ut+�t − ut� = �t�f �ut�
+ m2�ut − wt�� . �199�

To guarantee that our time discretization is fine enough, we
report “maxslide,” the maximum of Eq. �199� encountered in
a simulation. For the simulation shown on Fig. 16, this was
0.05. The figure shows ��u� at 
v=0, calculated with the
discrete algorithm used in the previous sections, and ��u� at

=1 and v=0.2. The microscopic disorder is a box distribu-
tion for the force, given by Eq. �193�. The result clearly
shows a rounding of the cusp by the nonzero velocity.

VI. LONG-RANGE CORRELATED FORCES

In addition to the three universality classes for short-range
�SR� correlated forces, there is also a family of universality
classes for long-range �LR� correlated forces. Consider a
Gaussian distributed force landscape with no bias
F�u�−F�u��=0 and second moment,

�F�u� − F�u���2 = 2��u − u���. �200�

We focus on �=1, i.e., a Brownian-force landscape, but one
expects a continuously varying fixed point as a function of �.
Although in most cases random-force landscapes at depin-
ning have short-ranged correlations, these more exotic LR
landscapes exhibit some interesting properties. Note that in
the statics the �very� LR correlated random potential land-
scape corresponding to the case �=1 was studied by Sinai
�71�. It was found that shocks are dense there.

Quite remarkably, exact results can be obtained for this
model for any nonzero velocity v�0, as noticed by Alessan-
dro, Beatrice, Bertotti, and Montorsi �66� who introduced
this model, hence referred to as the ABBM model, as a real-
istic description of the Barkhausen effect in metallic ferro-
magnets, and compared the results to experiments. The mass
term originates from the magnetostatic fields: the demagne-
tizing field �resulting from the effective monopoles sitting at
the end of the sample� provides a long-ranged restoring force
which acts as a spring, precisely as in the model considered
in this paper �see also discussions in Refs. �2,72��.

We first obtain some results on the quasistatic model, then
we recall some results of the ABBM analysis at v�0, and
obtain from it the renormalized correlator at nonzero veloc-
ity. We then discuss how these results match at v→0+.

A. Quasistatic motion

The forward process u=u�w� is defined as the smallest
root of

��u� = u − m−2F�u� = w . �201�

For �=1 the process ��u� is a Brownian motion �BM� of
diffusion constant D=� /m4 and upward drift b=1. The time
of the Brownian is t�u. From Fig. 17 one sees that it be-
comes a first-passage-time problem, i.e., u=u�w� is the first
time the process ��u� reaches altitude w. Conversely the
process w�u�=maxu�	u��u�� is the maximum position over
all previous times reached by a Brownian motion, see Fig.
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FIG. 16. �Color online� Rounding of ��u� through a finite ve-
locity; 
v=0.2. Inset: ���u�. The disorder distribution is P�f�
=��0	 f	1�, m2=0.003.
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FIG. 17. �Color online� ��u� defined in Eq. �201� for f a random
walk with D=1.67�103 �blue�. The dashed �red� line denotes
��u�=u. We show explicitly the graphical construction of u�w� for
w=3400, as well as a larger avalanche of size S=3785. The system
is discretized with step size 1 in u direction.
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18. To avoid pathologies we assume a cutoff which makes
F�u� smooth at very short scales; equivalently we can dis-
cretize in u direction, as was done to generate Fig. 17. In
AppendixE we have collected some useful properties of first-
passage times and maxima of the Brownian motion that we
now use extensively. We refer to this appendix for all details.

1. Avalanche distribution

From Fig. 17 one sees that the avalanche distribution P�s�
identifies with the return probability to the origin of the BM
with a drift b=1 and diffusion constant D=� /m4,

P�s� � P�s;W0� =
s0

1/2

2��
s−3/2 exp�−

s

4sm
−

s0

4s
+� s0

4sm
� ,

�202�

where u=s, P�u ;W� is defined in Eq. �E7�, b=1, and D
=� /m4. W0 is a nonuniversal short-distance scale. We have
defined s0ªW0

2 /D and smªD the short-scale and large-scale
cutoffs for the avalanche size. In the limit of small m one has
s0�sm, allowing one to drop the last term in Eq. �202�. There
are many small avalanches of the order of s0, i.e. the distri-
bution is concentrated at s0. However the moments 
sp� for
p�1 /2 are dominated by large avalanches. For s�s0 one
has

P�s� =

s�

2��sm

1

s3/2e−s/�4sm�, �203�

sm = D = �m−4, �204�

and 
s�=�sms0. This is exactly the distribution found in the
mean-field theory of sandpiles �73� and of the random-field
Ising model, and was recently shown to hold, using FRG
�61,74�, for elastic manifolds in d=4. The random-walk pic-
ture goes back to the so-called Galton process �75� for sur-
vival of family names �see �76� for a recent discussion in the
context of depinning� which exhibits the same mean-field
power-law behavior at the threshold.

2. Two-point conditional distribution

It turns out that the one-point-probability and critical-
force distribution is a subtle issue for this model, due to the
long-range nature of the landscape and the choice of bound-
ary conditions. We do not discuss it in details here, but some
considerations are given in AppendixF. A full solution re-
quires a separate study.

We can still offer some simple remarks. If we know, e.g.,
by observation in a numerical simulation or an experiment,
that the process is such that u�w1�=w1, then one can easily
compute, from the Markov property of Brownian motion, the
probabilities of all future events, i.e., the conditional prob-
ability for u�w2� , . . . ,u�wn� with w1�w2� . . .�wn,

Pw2,..wn
„u2, . . . ,un�u�w1� = u1…

= P�u2 − u1;w2 − w1�� ¯ � P�un − un−1;wn − wn−1� ,

�205�

where P�u ;w� is the first-passage-time probability defined in
Eq. �E7�. Computing the moments one finds

u�wn� − wn = u�w1� − w1, �206�

�u�wn� − wn − u�wp� − wp�2
c

= 2D�wn − wp� =
2�

m4 �wn − wp� ,

�207�

for any n , p�1. This defines the renormalized correlator

��0� − ��w� = �w , �208�

i.e., it is exactly the bare disorder correlator. Note that al-
though this result was derived from a conditional probability,
it is independent of the choice of u1 and w1 provided all
points wi to which it applies are larger than w1. Note also
that although the two-point correlator is the bare one, the
higher cumulants are different: they are nontrivial and can be
easily computed from Eq. �206�. Hence the system flows to a
nontrivial fixed point. Remarkably, one can check that Eq.
�208� is an exact fixed point of the two-loop FRG equation
for ���u�, i.e., the derivative of Eq. �7�,2 using the value
�=�=4−d �here �=4 which is the correct value for the
present model�.

We can also check that Eq. �208� satisfies the general
relation

−
2���0+�

m4 = 2
�

m4 = 2sm =

s2�

s�

. �209�

In fact, we can also check some of the general relations
discussed in �61,74� for the so-called higher Kolmogorov
cumulants, defined there,

2To obey Eq. �7� one should take ��0�= +� from the long-range
character, or consider a box size in u space, which modifies the
FRG analysis.
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FIG. 18. �Color online� ��u� defined in Eq. �201� for f a random
walk with D=1.67�103 �blue�. The dashed �red� line denotes
��u�=0 �walk with no drift�. We show explicitly the graphical con-
struction of u�w� for w=3400, as well as a larger avalanche of size
S=4401. The system is discretized with step size 1 in u direction.
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G�� ª exp�„�u�w� − w − u�w�� − w��… − 1�

= exp��w − w���1 − �1 − 4sm

2sm
− �� − 1

= �1 − �1 − 4sm

2sm
− ��w − w�� + O��w − w��2�

�210�

for w�w��w1, using formula �E6� for the Laplace trans-
form of the first passage time probability with b=1 and
D=sm. This is related to the fact that the full distribution of
avalanche sizes at the tree level �i.e., in mean field� in the
field theory coincides with the distribution of return times of
the one-dimensional Brownian motion.

B. Motion at finite velocity v�0

Let us now consider the case w�t�=vt, i.e., a particle
pulled by a spring at constant velocity,

�tu�t� = F„u�t�… + m2�vt − u�t�� . �211�

For simplicity, we set 
=1 �it can be restored by setting
t→ t /
 and v→
v�. For v�0 and since it is an overdamped
equation of motion �no overshoot�, the instantaneous veloc-
ity vtª�tu is positive �possibly after a short transient�, hence
one can write vt=v(u�t�), which satisfies

�tvt = F�„u�t�…vt + m2�v − vt� , �212�

�uv�u� = m2� v
v�u�

− 1� + F��u� . �213�

Since for the Brownian-force landscape F��u� is a white
noise, the second equation is a standard Langevin equation,
hence the probability to observe v at u, given that the veloc-
ity is v0 at u0 satisfies the Fokker-Planck equation,

�uP = �v���vP + „�vE�v�…P� , �214�

E�v� = − m2v ln v + m2v , �215�

with � function initial condition. For u→� it converges to
the equilibrium measure

Peq�v� = Z−1e−E�v�/� =
�m2/��m2v/�

v��m2v/��
vm2v/�e−m2v/�.

�216�

One can also directly work with Eq. �212�, rewriting it as a
stochastic equation �77�,

dvt = dF�t� + m2�v − vt�dt . �217�

dF�t�2=2�vtdt is a Brownian motion up to a time reparam-
etrization, and the factor vt can be seen by writing
�du� dF�u�

du �2=�dtvt
−1� dF�t�

dt �2. In Itô prescription this yields the
Fokker-Planck equation for the probability Q�vt=v , t �v0 , t0�
of velocity v,

�tQ = �v���v�vQ� + m2�v − v�Q� �218�

=�v���v�vQ� + v„�vE�v�…Q� . �219�

Hence the steady-state solution for t→� is Qeq�v−1Peq, the
velocity factor originating from the change of variable from
u to t. One has �66�

Qeq�v� =
�m2/��m2v/�

��m2v/��
v−1+m2v/�e−m2v/�, �220�

which yields the average velocity v̄Q=v, as expected, and the
connected expectation of the square of the velocity v2Q,c

=v �

m2 . Note that the average velocity using P is v̄P=v+ �

m2 ,
hence it does not even vanish as v→0+: this is because most
�in fact, as m→0, all� of the u segments belong to ava-
lanches, yielding a finite average velocity if weighted by du,
but that the fraction of time spent on them goes to zero,
consistent with v→0+.

ABBM also noted that the correlation function

C�t − t0� ª	 dvtdv0�vt − v��v0 − v�Q�vt,t�v0,t0�Qeq�v0�

�221�

satisfies the very simple equation �see also �77��

�tC = − m2C , �222�

obtained by multiplying Eq. �218� by �vt−v��v0−v�Qeq�v0�,
integrating over vt=v and v0 and using the fact that the cur-
rent J=��vvQ+m2�v−v�Q vanishes at v=0 and v→�. Af-
ter integration by parts one obtains Eq. �222�.

From this we can now obtain the renormalized disorder �
at v�0 and discuss the crossover. One first notes that from
the definition �5�, inserting w=vt and w�=vt� and taking two
derivatives, one has

C�t − t�� = �vt − v��vt� − v� = − v2m−4��„v�t − t��… .

�223�

Since from Eq. �222� and above,

C�t� = v�m−2e−m2t, �224�

we obtain

���w� = −
�

v
m2e−m2w/v. �225�

Integrating twice we finally obtain

��0� − ��w� = �w −
�v
m2 �1 − e−m2w/v� , �226�

a formula valid for any v�0. The integration constant has
been fixed by either of the two equivalent conditions: �i� no
cusp at w=0; �ii� the large-w behavior is the same as in the
bare model, and as in the statics, i.e., in the limit v→0, given
by Eq. �208�. A nonzero velocity v�0 thus smoothens the
cusp in a boundary layer of size w�v /m2, but the function
remains nonanalytic: there is a subcusp, i.e., a nonzero
���0+�; indeed one has at small w
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��0� − ��w� =
m2�

2v
w2 −

m4�

6v2 w3 + O�w4� . �227�

This indicates continuity of u(w�t�) but jumps in its deriva-
tive, the velocity. It remains to be understood whether this
feature is more general or if it is tied to the long-range nature
of the random force landscape.

The distribution of avalanches times �in t� and sizes �in u�
at v�0 can be extracted by studying the returns “near” the
origin of the process, i.e., the return to the origin inside the
potential well E�v�. This is given by Eq. �212� or equiva-
lently by

dv = m2� v
v

− 1�du + �2�dB , �228�

where dB�u� is a standard unit Brownian motion. Near
v=0 we can first ignore the drift term −m2du. Define the
change of variables y=2�u, then v�u�=r�y=2�u�
=��i=1

d̃ xi
2�y� is the norm of a d̃-dimensional BM in the vari-

able y �78�, which satisfies

dr =
d̃ − 1

2r
dy + dB�y� , �229�

d̃ = 1 +
m2v
�

. �230�

This yields the avalanche-size exponent �=2− d̃ /2, for d̃
	2, from the power-law decay of first return probabilites of
a Brownian near the origin, see Appendix G,

� =
3

2
−

m2v
2�

�231�

below a critical velocity v	� /m2. This result was antici-
pated in Refs. �79,80�. Note that the definition of avalanches
at v�0 is not clear cut and requires a small velocity cutoff
noted v0. In Appendix E 3 it is shown that

P�s� =
1

��� − 1�
1

s
� s0

s
��−1

e−s0/s, �232�

s0 = v0
2/�4�� �233�

for v0�v. Since the drift is neglected Eq. �233� holds only
for s�sm=� /m4, the large scale cutoff. The drift provides a
large velocity cutoff v�=� /m2 in Eqs. �216� and �220�, and
a large relaxation time cutoff t�=m−2, with sm=v�t�. For
larger velocity v�� /m2 the behavior changes qualitatively.

It corresponds to d̃�2, see Appendix G, and the most prob-
able velocity in Qeq�v� is no longer near v=0.

More details and the solution including the drift term are
given in Appendix E 3 for the various regimes. In particular
it is shown that one recovers the quasistatic size distribution
obtained above in the limit v=0+.3 For v	� /m2 the random
walk v�u�, in the continuum limit, comes back infinitely of-

ten near the origin �i.e., near v0�, hence the role of the drift
term is mainly to cut off the rare large avalanches, very much
similar to the statics �see, e.g., the discussion in �61,74��. For
v�� /m2 the random walk in velocity space is still certain to
come back near the origin but only because of the drift.
There are then two types of avalanches. In a fraction of them
�computed in Appendix E 3� the instantaneous velocity v
does not reach v: these avalanches are still described by the
model without the drift �first-return “time,” conditioned to
return� and lead to power-law distributions. In the rest, the
velocity reaches v and equilibrates in the well E�v�; the
“time” between two returns at small v0�v can then be esti-
mated as ��v0�−m2v/� proportional to the inverse equilibrium
probability �either Peq or Qeq depending on whether one is
interested in avalanche size or duration�. Typically there will
be a bunch of small avalanches of the first kind separated by
one of the second kind. Eventually at larger velocities returns
to the origin v0�v become very rare events and there is no
real sense in which one can talk about avalanches.

VII. DEPINNING AND EXTREME STATISTICS
OF RECORDS

A. Model without a mass: Records without drifts

For a particle pulled through a random-force landscape it
is also possible to consider the problem without a parabola.
The problem is easier to solve, but the correspondence with
the FRG calculations is much less clear. Let us give here
some elementary results.

We now have to solve for the smallest root u�f� of

f = − F�u� �234�

where f is the applied force. We study the case where the
force is continually increased. The process u�f� then has
jumps from ui to ui+1 as the force crosses the values f i, which
form an increasing sequence. These values are called the
record values for the process F�u�, and the ui the record
times. Statistics of records thus naturally occurs in the phys-
ics of depinning. The problem is to find the running maxi-
mum �i.e., the record� of an unbiased process, while in the
case of a mass it had a drift. In the absence of a drift the only
scale in the problem is the system size M.

1. Uncorrelated forces

Let us start with the discrete model of uncorrelated forces
studied in Sec. III A, characterized by a force distribution
Pf�F� for each site. A similar problem was studied in �81�
�Sec. IV B�. There the probability distribution of the full
record value sequence �f1� f2 , . . .� fn , . . . � was obtained for
a semi-infinite line. It can be mapped onto a sum of indepen-

3Note however that these results are for a pure Brownian land-
scape. If the force landscape is smooth at short scale u0, Eq. �233�

holds only for s0�u0. For s0	u0 the short-scale cutoff function for
P�s� is more complicated, but this has no consequence for the be-
havior for s0�s�sm still given by Eq. �233�. In the small v limit,
there is a further crossover velocity vc=�4�u0 below which the
short-scale cutoff function progressively becomes the one of the
quasistatic limit.
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dent variables as follows: The sequence distribution can be
obtained from

��fn� = �
i=0

n

ai �235�

for any n�1, where the ai are independent positive
random variables, each with an exponential distribution
P�a�da=e−ada. The function

��f� = − ln 	
−�

f

dFPf�F� �236�

describes the tail of the distribution, here the smallest f . For
stretched exponential tails, as in class I, the growth is
fn�n1/�, while for power-law tails, as in class II, the growth
is exponential in n.

Another set of results, remarkably universal, is known
�62,63� for the probability P�N �M� of the number of records
N, here equal to the number of jumps, for a system of size M
�notations are inverted as compared to �62��. Then for an
uncorrelated sequence of Fi it was shown �82� that at large M

N = ln M + ��ln M , �237�

where � is a univariate Gaussian random variable �65,66�.
Hence the translationally averaged avalanche size in absence
of a mass should be

1

N
�
i=1

N

si =
M

N
→

M

ln M
, �238�

i.e., it is the typical avalanche size M

N̄
. In the language of

records the avalanche sizes si=ui+1−ui are the time intervals
between successive records, also called record ages. The
translational average grows unboundedly with system size.
Hence there are very few avalanches and they are almost as
large as the system. Note that, at variance with the results on
the sequence f i, this result is independent of the distribution
Pf�F� for continuous distributions.

2. Forces correlated as a random walk

In the case of a landscape obtained as a discrete-time
random walk, Fi=Fi−1−
i where 
i are uncorrelated random
variables drawn from the same symmetric continuous distri-

bution P�−
�= P�
�, it was recently obtained in Ref. �62�
that

�
M=N−1

�

P�N�M�zM =
�1 − �1 − z�N−1

�1 − z
. �239�

Equivalently

P�N�M� = 2−2M+N−1�2M − N + 1

M
��M→�

1
��M

e−N2/�4M�.

Hence for large sizes M, the average number of jumps be-
haves as �62�

N̄ �
2

��
�M . �240�

There are also results for the jump sizes si, named
record ages li in Ref. �62�. The typical jump size is

styp=M / N̄=��M /2, while the average maximal jump size is

smax=0.626 508M and the average minimal jump size is

smin=�M /� �62�.

B. Model with a mass: Records with a drift

The usual problem of records with drifts �63� consists in
studying the sequence

Yi = Xi + ci �241�

with c�0 where the Xi are symmetric random variables. One
way to present the correspondence to the depinning model
with a mass4 is that

Xi = − Fi, c = m2. �242�

The set of �upper� records Yip
, p=1, . . . ,N, i=1, . . . ,M, i.e.,

successive highest values, are the values m2wp at which a
jump from up= ip to up+1= ip+1 occurs in the process u�w�.

1. Short-range correlations

In the case of IID random variables with a drift it was
shown that the total number of records N up to time M grows
linearly as N�r�c�M with �normal� fluctuations which were

4One can also set Xi=−Fi /m2 and c=1 as in Sec. VI.
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FIG. 19. �Color online� Two particles dragged through a
random-energy landscape by parabolic potentials �springs� whose
centers have identical starting and final positions but follow differ-
ent paths �w1�t�� and �w2�t��.
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FIG. 20. �Color online� Two particles dragged through a
random-energy landscape by parabolic potentials �springs� whose
centers follow parallel straight lines as described in the text
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characterized �63,64�. However obtaining analytic results,
even for r�c�, for a general distribution was found difficult
and some results were obtained only for special distributions
P�F� �63,64�. The function r�c� is related to the avalanche
density 1 / 
s�=r�c�, which is finite in presence of a mass, and
is computed here for small m2=c. We solved the problem for
arbitrary distributions P�F� and found universality in the
small c limit, with three classes. In addition we obtained the
joint distribution P�w ,s� of �i� the time s between one record
and the next; �ii� the difference in value w with the previous
record.5 These results were given in Sec. IV.

2. Long-range correlations

Let us now extend the discussion of Ref. �62� to records
with drift, i.e., depinning with a mass. Again we consider the
random walk Xi=Xi−1+
i with IID random variables 
=−F
of distribution Pf�
�. The alert reader will note that Pf�
�,
Pava�s�, and P�s� below denote three different probabilities
and functions. Pf�
� produces a correlated sequence Xn−X0
=�i=1

n 
i. For n�1 we set

P�n� = Prob�Xn � X0 − cn� = Prob�Yn � Y0� ,

Q�n� = Prob�Xi � X0 − ci,i = 1, . . . ,n� �243�

=Prob�Yi � Y0,i = 1, . . . ,n� . �244�

The Sparre-Andersen theorem �83–85� states that

Q�z� ª �
n=0

�

Q�n�zn = exp��
n=1

�
P�n�

n
zn� , �245�

setting Q�0�=1 by convention. We denote F�n�ªQ�n−1�
−Q�n� the first passage probability that Yn crosses Y0 be-
tween steps n−1 and n. As in �62� the joint distribution of
record ages �jump sizes� si and number N of records is

P��s�,N�M� = F�s1�F�s2� ¯ F�sN−1�Q�sN���i
Nsi=N.

�246�

While for c=0, P�n�=1 /2 independent of n, leading to Eq.
�239� and the very universal results of �62� quoted above, for

c�0 the sequence P�n�, hence Q�n�, usually depends on the
details of the distribution P�
�. Hence apart from the
asymptotic behavior at large n �hence M�, one expects less
universality.

The following formulas are still valid: The generating
function for the probability to have N records given M,
P�N �M�=��s�P��s� ,N �M� can be written as

�
M=N−1

�

zMP�N�M� = F�z�N−1Q�z� , �247�

where F�z�ª�n=1
� F�n�zn=1− �1−z�Q�z�. For instance the

generating function for the average number of jumps is ob-
tained by multiplying Eq. �247� by N, and summing over N,

�
M�0

zMN̄�M� =
1

�1 − z�2Q�z�
. �248�

Similar results hold for higher moments.
If one considers Pf�
� with a finite second moment, the Xi

are in the universality class of the Brownian motion and one
should recover the results of Sec. VI using that �85�

P�n� � n−1/2e−nS�c�, Q�n� � n−3/2e−nS�c� �249�

with a common function S�c�=O�c2� at small c. For instance,
if Pf�
� is a univariate Gaussian, P�n�= 1

2 �1−erf�c�n /2��
��2�c2n�−1/2e−c2n/2 for large n. We will not study the
Brownian case in detail, since it was already discussed in
Sec. VI, and we refer to Ref. �85� for a detailed asymptotic
analysis �as well as a nice proof of Eq. �245��.

Of course we expect that stable distributions play a spe-
cial role. Here we detail one example of a Levy-type
random-force landscape, for which the results for the records
with drift are particularly simple, and present a nice gener-
alization of Ref. �62�, although they may not be as universal.
Consider the Cauchy distribution,

Pf�
� =
a

��
2 + a2�
, �250�

such that the distribution of Xn−X0 is also Cauchy with pa-
rameter a→na. Quite extraordinarily,

5With the same method one can obtain the difference in value w
with the next record.

FIG. 21. �Color online� Trajectories of particles dragged from left to right by a parabolic well. Trajectories starting at different random
initial positions all converge towards the same trajectory, with the same position at a given time �which is not visible on the plot�. The
minimum position of the parabola in y direction is indicated by a straight �orange and/or grey� line. At the right, we show our coordinate
system. The inset at the top is a blowup of part of the curve. It shows a deviation from the no crossing property which holds for N=1
�Middleton theorem �87��: Trajectories which are together can split up, even if later on they join again �see text�.
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P�n� = 	
cn

� nadx

��x2 + �na�2�
= 	

c

� adx

��x2 + �a�2�
¬ p

is independent of n, with 0�p=arctan�a /c� /��1 /2 for
c�0. Hence Q�z�= �1−z�−p and F�z�=1− �1−z�1−p, and

Q�n� =
��n + p�

��1 + n���p�
, �251�

F�n� = �1 − p�
��n + p − 1�
��1 + n���p�

. �252�

Using Eq. �248� one finds the average number of records
�i.e., of jumps�,

N̄ =
��2 + M − p�

��1 + M���2 − p�
�M→�

M1−p

��2 − p�
, �253�

which grows as a power law of the size. Higher moments
grow with the same scale,

N2 = − N̄ +
2��3 + M − 2p�

��1 + M���3 − 2p�
. �254�

Hence at large M the connected fluctuations are

N2 − N̄2 = � 2

��3 − 2p�
−

1

��2 − p�2�M2�1−p�, �255�

and in all cases the results of Ref. �62� are recovered for
p=1 /2, the case without drift. The full distribution takes a
scaling form at large M,

P�N�M� � Mp−1gp�NMp−1� . �256�

Summing Eq. �247� with this scaling ansatz at large M, i.e.,
xª−ln z�1−z small yields

	
0

�

dMMp−1e−Mxgp�NMp−1� � x−pe−Nx1−p

with g1/2�y�=e−y2/4 /��.
From Eq. �246� one sees that the distribution of avalanche

sizes �i.e., record ages� is Pava�s�=F�s� for s=1,2 , . . .. For
fixed p and large s it decays from Eq. �252� as a power law
with �=2− p,

Pava�s� = F�s� �
s−�2−p�

− ��p − 1�
. �257�

This leads to a simple interpretation in terms of a directed
random walk with traps of independent random release times
si, distributed as P�s��s−�1+ � and 1 /2	 =1− p�1.
M is the total time t and N the distance x traveled. As
is well known, for  �1, x� t and the distribution of
z= t /x1/ =M /N1/�1−p� is a Levy stable distribution L �z� with
positive support, which is indeed the solution of Eq. �256�,
gp�y�= −1y1−1/ L �y−1/ �.

Although the strong universality of the symmetric case
does not hold, we expect that all processes in the class of the
Cauchy process remain critical even with a drift which has a
power-law distribution of avalanches given above, and a
continuously varying exponent. For stable processes interme-
diate between Cauchy and Gaussian, avalanches should be
cut at a finite scale, which diverges with different exponents
as c→0. The situation of stable processes broader than the
Cauchy distribution remains open.

VIII. GENERAL CONSIDERATIONS
ABOUT AN N-COMPONENT DISPLACEMENT FIELD

Up to now, we have considered particles, and more gen-
erally elastic objects and manifolds, whose position is a one-
component function. We now consider particles or elastic
objects embedded in higher dimensions N�1. For simplic-
ity, we focus on a particle, but the considerations in this short
section can be extended to d-dimensional elastic manifolds.
In the next section we consider an application to a particle
driven in a two-dimensional random-energy landscape.

Consider two particles, which see the same random-
energy landscape, but which sit in different parabolas, la-
beled 1 and 2. These parabola are chosen with the same
curvature m2 but their centers differ, and can have very dif-
ferent trajectories, which we call �w1�t�� and �w2�t��. An in-
teresting case is when the trajectories differ but the end
points coincide w1�ti,f�=w2�ti,f� as in the example of Fig. 19.
In that example it is clear that

�uw1
�tf� − uw2

�tf�� � �2
fc

m2 . �258�

This is because there should be a nonzero critical force, fc,
and that each particle lags behind each parabola center wi�t�,

FIG. 22. �Color online� Trajectories of 200 particles dragged from left to right. All particles start at �0,0�. However, they sit in different
potential wells �as described in the main text�. As can be seen, they mostly move together on preferred trajectories, before separating again.
The end points are joined by yellow lines. m2=0.003. The particles in the two outer wells, as the center one, are marked in colors �red and/or
blue, green�. The well was moved for a total of 1000 steps.
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up to fluctuations, roughly in minus the direction of drift.
Thus the process uw depends on the trajectory w�t�, and to
define a single valued function uw, we have to restrict to a
single well-defined trajectory w�t� in a quasistatic limit. Con-
sider now Fig. 20. Both parabolas move with the same ve-
locity v in x direction. They are completely characterized by
their position w� = �x=x0+vt ,y��, with w� �RN, y� �RN−1. Espe-
cially note that without loss of generality, x0 can be put to 0.
Again we integrate the Langevin equation �1�, to define u��w� �.

A more difficult question is whether u��w� � depends on the
initial condition u��t0�, and since we have set x0 to 0, implic-
itly on the starting time t0. One expects �see next section for
how it occurs� that the dependence of u��w� � on t0 disappears
in the limit of t0→−�, and this is the limit we are interested
in. This could be checked, similar to the exact sampling
method, see, e.g., �86�, by starting at time t0, and checking
that at the time of interest t, all trajectories from all possible
initial conditions have converged towards a single one. If
not, one starts at an earlier time t−1, and checks again, repeat-
ing this procedure until all trajectories have converged. This
defines a function u��w� �, which is now independent of the
initial time and conditions. In the next section it will be
checked numerically that for a particle driven through a two-
dimensional bounded random-energy landscape, all trajecto-
ries indeed converge, see Figs. 21 and 22. It is also found
there that the so-called no crossing property �Middleton
theorem �87�� does not hold for N=2: although violations
appear to be rare there are some instances of two trajectories
splitting up. This results from a second particle �more prop-
erly, a second trajectory of the same particle with a different
initial condition� arriving at a later time on the same site: it
then feels a stronger drive from the parabola and may jump
forward and pass the first particle. An example is shown in
Fig. 21.

Having given an unambiguous definition of u��w� �, we can
calculate connected correlation functions of its moments,
which again define � �now a tensor�, and higher cumulants.
For this tensor the driving direction x will play a special role
�for N�2 we expect isotropy in the other N−1 direction.
The calculation is done for a particle in the next section.
Other definitions of u��w� � could of course be given. The sim-
plest one is to pick a fixed but different driving direction.
From statistical isotropy of the disorder the results should be
the same up to the rotation. We defer the study of more
complicated driving processes to future work.

IX. A PARTICLE DRAGGED IN TWO DIMENSIONS:
D=0, N=2

We now study particles dragged through a two-
dimensional random-energy landscape.

The algorithm works as follows: We generate a random-
energy landscape on a square lattice. A particle in addition
sees a parabolic well. The total energy is the sum of both. We
will mostly use a box distribution for the energy of a site,
uniform in �0, 1�. Energies on different sites are uncorrelated.
We then update all particle positions: If a particle can move
in a direction such that and lower its potential energy, it will
do so. If there are several such directions, it will choose the
one with the lowest final energy. We allow moves to the eight
nearest neighbors numbered from 1 to 8 �starting at the cen-
ter 0�,

1

0

2

456

7

8

3

If a move is possible, we perform it and then try other
moves again, until the particle finally becomes stuck. If sev-
eral moves are possible, we take the one which results in the
largest descent in energy, i.e., we go into the direction of the
maximum force. Only then, we update the position of the
parabola, by moving it from w to w+dw=w+vdt. We record
the particle position as a function of time t.

We first show numerically that there is a unique attractor
trajectory �see Fig. 21�. We start particles at random posi-
tions, but in the same parabolic well. Then move the pa-
rabola in a given direction �here always to the right, also
denoted the x direction�. One sees that trajectories converge,
and particles will have the same position at a given time �not
visible on Fig. 21, which only shows the world lines.� This
convergence can be understood from the fact that if two
“particles” �in fact these are the same particle but with dif-
ferent initial conditions� meet at a site at the same time, their
future evolution is identical. Hence the deep sites with low
energies where the particle becomes temporarily stuck act as
sinks where the trajectories merge. Clearly, the particle needs
to be trapped long enough for the process to be efficient.

Our proper simulation is done with many particles �here
200�, each sitting in a parabola which are displaced by one
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FIG. 23. �Color online� Scaling collapse for �̃xx�x ,0�
ªm−4+2�x�xx�xm�x ,0�, with �x=1.595. The scaling collapse is per-
fect except for the two largest masses.
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unit �or in general by dy� to the top. This gives us data points
in the y direction. In the x direction �in which we move the
parabolas�, we use that after some time t the parabola has
been displaced by a distance vt. We denote the minimum of
the parabola wt,y and its ith component wt,y

i as

wt,y ª �vt,y�, wt,y
0
ª vt, wt,y

1
ª y . �259�

The particle sitting in this parabola will have position uwt,y
,

with components uwt,y

i . We then define �ij�tv ,y� as

�ij
„�t� − t�v,y… ª m4�uwt,0

i − wt,0
i ��uwt�,y

j − wt�,y
j �

c
.

�260�

The connected symbol c indicates that we have subtracted
the critical force. �ij�x ,y� has the following symmetry prop-
erties:

�ii�x,y� = �ii�x,− y� , �261�

�01�x,0� = 0, �262�

�01�0,y� = − �10�0,y� . �263�

This is a consequence of the relabeling symmetry in Eq.
�260� �ij�x ,y�=� ji�−x ,−y� and obvious covariance under the
parity symmetry y→−y. For smaller and smaller masses,
there will be more and more data points. Steps in the x di-
rection are necessarily discretized, of size dw=vdt. This
poses an additional problem not present for N=1: there
choosing a dw too large results in a loss in precision �since
some smaller jumps may be overrun� but does not have dra-
matic consequences for large jumps, especially does not

change the end point u�w�, due to Middleton’s theorem �87�.
In contrast, for N=2, if the parabola is not moved adiabati-
cally, the particles will see a strong force forward, and there-
fore be more likely to move forward, instead of sideward,
thus embarking on a different trajectory. This may alter the
whole trajectory over a much larger region. In practice, we
decided to never move the parabola by more than one unit,
before checking whether a move could be made. It may be a
possible source for finite-size corrections. These will disap-
pear if, and only if the critical force scales to zero for
m→0, since the energy gain for an elementary move is

m2

2
��u + 1 − w�2 − �u − w�2� = m2�u − w +

1

2
� � fc.

�264�

However, fc goes slowly towards 1, by which it is bounded.
Unfortunately we find, e.g., fc�m2=0.01�=0.464 602,
fc�m2=0.0001�=0.785 073. This might indicate that the step
size we have used is still too large. We have not attempted to
use a smaller step size due to the enormous computing pow-
ers needed. We nevertheless believe that the results are valid
for the following reason: fc measures the time average of
uw−w, but we have to know the forward force exerted by the
spring, when the particle arrives at the trap. Clearly, this
must be much smaller, otherwise in a few steps the force
would have increased by 1, which is sufficient to overcome
any barrier for the box-distributed random energies, and the
particle would not remain pinned for a long time. However
we see diverging trapping times in the simulations, thus the
argument using Eq. �264� is not valid.

We now present data for the force-force correlators in
Figs. 23–27, for masses ranging from m2=0.1 to m2=10−5,
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FIG. 24. �Color online� Scaling collapse for �̃yy�x ,0�
ªm−4+2�y�yy�xm�x ,0�, with �x=2 and �y =1. The descending lines
indicate that no data have been collected for larger values, due to an
insufficient choice of parameters. Good scaling collapse.
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FIG. 25. �Color online� Scaling collapse for �̃xx�0,y�
ªm−4+2�x�xx�0,ym�y�, with �x=1.595 and �y =1. The scaling col-
lapse is excellent for all but the three largest masses.
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descending in half decades. A first and important qualitative
conclusion to be drawn is that all correlators not only depend
on x, but also on y. This is in contradiction to the fixed-point
structure used by Ertaş and Kardar �67�, whose �ij depends
only on x and not on y.

Our aim is to determine the scaling exponents �x and �y
from the finite-mass scaling ansatz, suggested by the FRG
equations for this problem �68�,

�̃m
ij�x,y� ª m−4+�i+�j�ij�xm−�x,ym−�y� , �265�

and supposing that �̃m→ �̃ for m→0. We find that for
�xx�x ,0�, �yy�x ,0�, �xx�0,y�, �yy�0,y�, and �xy�0,y� sepa-
rately such a scaling collapse is possible. There is no doubt
that �y =1, with consistently rather small errors: the scatter
from the different estimations is �y =1.009�0.015.

However, the results for �x are less consistent. We find
different values, depending on which quantity we consider.

There is a clean data collapse on Fig. 24 for �̃yy with �x=2;

however on Figs. 23 and 25 for �̃xx the best collapse is with

�xx=1.6; finally on Fig. 27 for �̃xy, the best scaling collapse
is for �x=1.25, where however some of the data are noisy
�but note that at least the data for the second-smallest mass,
which are already very difficult to obtain, and for some of
the larger masses, show only little noise, such that noise does
not seem to be an issue here�. Let us recall for comparison
that for N=1 a particle driven in a random-energy landscape
with a box distribution belongs to universality class III with
�=3, i.e., �x=4 /3, see Secs. III C 3 and III D 2. �For a box
random force it is �=1 and �=1.�

To conclude, we have shown that the unique attractor tra-
jectory can be defined for the particle with N=2, and that the
disorder correlator �ij�x ,y� can be measured.

X. CONCLUSION

To conclude we have shown how the renormalized disor-
der correlator ��w�, central to the functional RG theory of
depinning, can be measured for a manifold of internal di-
mension d driven by a spring in an N=1 random landscape.
This correlator contains information about the stick slip mo-
tion of the interface.

We have solved analytically the case d=0 of a particle in
a short-range correlated pinning-force landscape, finding
three universality classes. In each case we have obtained the
universal fixed-point forms for ��w� for quasistatic driving,
i.e., the depinning fixed point. In all cases it exhibits the
famous cusp at w=0+. We have also obtained the distribution
of critical forces, avalanche sizes and waiting times, and
checked the general relations conjectured to hold between
their moments and the cusp ���0+�. While the exponent �
can take various values depending on the class, the
avalanche-size exponent was found to be �=0 in all cases,
which invalidates, at least at a naive level, the conjecture �
=2−2 / �d+��. We also found that the distribution of ava-
lanche sizes and waiting times are identical in the scaling
limit.

We have extended our results to a particle driven in force
landscapes with the correlations of a random walk. In the
Brownian case, known as the ABBM model for interface
motion and Barkhausen noise, it is possible to solve for any
driving velocity and check the quasistatic limit. Remarkably
this model has much in common with the mean field theory
of avalanches and recent FRG results for avalanche distribu-
tions in d=4. Since �=4, the avalanche exponent for v=0+
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FIG. 26. �Color online� Scaling collapse for �̃yy�0,y�
ªm−4+2�y�xx�0,ym�y�, with �y =1. The collapse is good, except for
the three largest masses.
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FIG. 27. �Color online� Scaling collapse for �̃xy�0,y�
ªm−4+�x+�y�xy�0,ym�y�, with �x=1.25 and �y =1. The signal-to-
noise ratio is rather big. In order to improve the statistics, we have

used �after numerical verification� that �̃xy�0,y�=−�̃yx�0,y�, to plot
1
2 ��̃xy�0,y�− �̃yx�0,y��. Fair scaling collapse, except for the two
largest masses.
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obeys, in that case, the conjecture �=2−2 / �d+��.
In each case we have emphasized the connections be-

tween the depinning problem for a particle and the extremal
statistics of records, with and without drifts.

These exact results in d=0 provide interesting checks and
interpretations of the functional RG theory, and help us un-
derstand what we should expect for manifolds.

Finally, we started addressing the problem of depinning
for N�1, mostly numerically; even for a particle it is quite
nontrivial. We have checked numerically the consistency of
the method, based on the ergodicity in presence of driving
via a quadratic well. Numerous open problems remain.
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APPENDIX A: DYNAMICAL ACTION AND OBSERVABLES

In this section we establish the relation between the effec-
tive action and observables; this is an extension to the dy-
namics of the proof given in �57,88� for the statics. This
relation allows one to measure the correlator of the dynami-
cal FRG as explained in the text. Since the dynamical field
theory is significantly more complicated than the static rep-
lica field theory, the arguments presented here may be
slightly less general and rely on further assumptions about
the nature of the quasistatic limit and its ergodic properties,
some remaining to be demonstrated, as, e.g., extensions to
N�1 components is less straightforward than in the statics
�57,88�. At a formal level, however, the arguments are rather
similar.

We use notations of the text and consider the following
equation of motion:


�tu�x,t� = Fx�u�t�;w�t�� + ��x,t� ,

Fx�u;w� = m2�w�x� − u�x�� + �x
2u�x� + F„x,u�x�… , �A1�

where w�t� is given, and ��x , t� is the thermal noise. We
denote in general implicitly uxt

s =u(x , t ;u0�x , t0� ,F ,�) the so-
lution for given initial condition, disorder, and thermal noise.

1. Definition of functionals

Let us first recall the definition of the useful functional of
the dynamical field theory. We write the dynamical �Martin-
Siggia-Rose �MSR�� action S in compact notation as

S�u, û� = û · g−1 · u + û · A�0��u� −
1

2
û · B�0��u� · û + O�û3�

�A2�

For any “vectors” u ,v we denote u ·vª�xtuxtvxt �and addi-
tional index contraction for N�1�, A and B are, respectively,

vector and matrix functionals. gxy can be an arbitrary �time
independent� symmetric matrix but the usual choice is �in
Fourier� gq

−1=q2+m2. The functionals defining the bare ac-
tion are

A�0��u�xt = 
�tuxt, �A3�

B�0��u�xt,x�t� = 2
T�xx��tt� + �0�uxt − ux�t���xx�, �A4�

which is the standard MSR action averaged over disorder.
The statistical tilt symmetry �STS� of the bare action states
that A�0��u� and B�0��u� are invariant under the change uxt
→uxt+�x. It implies the same symmetry for A�u� and B�u�.
The generating function of connected correlations is

exp�W�w,ŵ�� ª	 D�u�D�û�exp�− S�u, û� + û · g−1 · w

+ ŵ · g−1 · u� , �A5�

where the sources have been redefined, following �57,88�, in
a convenient way for the following. It also admits an expan-
sion similar to the action

W�w,ŵ� = ŵ · g−1 · w − ŵ · Â�w� + 1
2 ŵ · B̂�w� · ŵ + O�ŵ3� ,

�A6�

where the STS implies that Â�w� and B̂�w� are invariant un-
der the change wxt→wxt+�x. Finally the effective action
functional � is defined as usual as the Legendre transform of
W,

W�w,ŵ� + ��u, û� = û · g−1 · w + ŵ · g−1 · u . �A7�

It admits the expansion

��u, û� = û · g−1 · u + û · A�u� − 1
2 û · B�u� · û + O�û3� .

�A8�

STS implies the same symmetry for A�u� and B�u� as for
A�0��u� and B�0��u�.

2. Relations to observables

The functional W is directly related to observables, i.e.,
correlation functions, in the following way: Consider the av-
erage over solutions of the equation of motion,


e�xtŵ·g−1·us
��,u0

=	 D�u�D�û�e−Sw�u,û�+ŵ·g−1·uxt

=	 D�u�D�û�ue−S�u,û�+û·g−1·w+ŵ·g−1·u = eW�w,ŵ�.

�A9�

Here Sw is the MSR action in presence of w, while
S�Sw=0 is the action defined above, in the absence of w. As
usual, to take into account the initial conditions �if neces-
sary� all time integrals start at t0 and an additional integral
D�u0�P�u0� fixes its probability at t= t0. Expanding the above
average, one finds
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W�w,ŵ� = ŵ · g−1 · 
u�w +
1

2
ŵ · g−1 · �
uu�w

− 
u�w
u�w� · g−1 · ŵ + O�ŵ3� . �A10�

Note that the �matrix� average 
uu�− 
u�
u� is not the con-
nected thermal average but the connected double
�disorder+thermal� average. Note the index w which indi-
cates that the above averages, e.g., 
uxt�w, are averages with
respect to Sw, i.e., in presence of the �given� driving wxt.
Comparing with Eq. �A6� we obtain


uxt�w = wxt − gxyÂyt�w� , �A11�


uxtux�t��w − 
uxt�w 
ux�t��w = gxygx�y�B̂yt,y�t��w� ,

�A12�

where summation �integration� over repeated indices is im-
plicit. Until now wxt is arbitrary. For a uniform driving wt
one has


�wt − ūt�� = m−2 1

Ld	
y

Âyt�w� , �A13�


�wt − ūt��wt� − ūt��� − 
�wt − ūt�� 
�wt� − ūt���

= m−4 1

L2d	
yy�

B̂yt,y�t��w� . �A14�

These are the �spatially� local parts of the Â and B̂ function-
als, and we expect

lim
L→�

lim
�tw�t�→0+

lim
T→0

1

Ld	
y

Âyt�w� = fc, �A15�

lim
L→�

lim
�tw�t�→0+

lim
T→0

1

L2d	
yy�

B̂yt,y�t��w� = L−d�̂�wt − wt�� .

�A16�

More relations can be derived, e.g., by considering the for-
mal expansion �symbolically�

W�w + �w,ŵ�

= �
n1n2

1

n1!n2!

û ¯ ûu ¯ u�w

c
�g−1�w�n1�g−1ŵ�n2.

�A17�

Hence one has


ûx�t�uxt�w = gxx�
−1 �tt� − ��wÂ�w��x�t�,xt. �A18�

Let us also recall that the quadratic parts of W and � are
�always�

Wquad�w,ŵ� = ŵ · g−1 · R · g−1 · w + 1
2 ŵ · g−1 · C · g−1 · ŵ ,

�A19�

�quad�u, û� = û · R−1 · u − 1
2 û · D · û , �A20�

where R and C are the exact response and correlation func-
tions �in the absence of w� and C=RtDR.

Finally, it is useful to mention the terms without disorder,

A�u� = a · u , �A21�

�uA�u� = at, �A22�

g−1 + a = R−1, �A23�

Â�w� = â · w , �A24�

�wÂ�w� = ât, �A25�

g−1 − â = g−1 · R · g−1, �A26�

with

â · �1 + g · a� = a , �A27�

â = a · �1 + g · a�−1 �A28�

3. Legendre transform

Our aim is to relate the functionals Â and B̂, which are
observables as established above, to the functionals A and B
associated to the effective action.

Let us thus perform the Legendre transform. In this trans-
formation one defines the functionals w�u , û� and ŵ�u , û�
which allow to compute � from W using Eq. �A7�. One has

w = g ·
��

�û
= u + g · A�u� − g · B�u� · û + O�û2� , �A29�

ŵ = g ·
��

�u
= û + g · �uA�u� · û −

1

2
g · �uû · B�u� · û + O�û3� .

�A30�

The inverse relations are useful as well,

u = g ·
�W

�ŵ
= w − g · Â�w� + g · B̂�w� · ŵ + O�ŵ2� ,

�A31�

û = g ·
�W

�w

= ŵ − g · �wÂ�w� · ŵ +
1

2
g · �wŵ · B̂�w� · ŵ + O�ŵ3� .

�A32�

From Eqs. �A29� and �A31� one deduces that

w − u = g · A�u� + O�û� = g · Â�w� + O�ŵ� . �A33�

This implies that
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A�u� = Â��w��û=0 = Â†u + g · A�u�‡ , �A34�

which allows in principle to compute one functional from the
other. One has the equivalent relation

Â�w� = A†w − g · Â�w�‡ , �A35�

Moreover

B�u� = − g−1 · dw/dû , �A36�

where û should be set to zero at the end. We have used a
notation which makes the position of the indices clear. From
Eq. �A30�,

dŵ/dû = 1 + g · �uA�u� − g · �uû · B�u� + O�û2� .

�A37�

Note the subtle difference with

dw/du = 1 + g · A�u��� u − g · B�u� · û�� u + O�û2� .

�A38�

This means that �at least at order O�û�=O�ŵ�, but eventually
even exact�

g−1 · dw/du = �g−1 · dŵ/dû�t. �A39�

From Eq. �A31� follows

B�u� = − g−1 · dw/dû

= − g−1d�u + g · Â�w� − g · B̂�w� · ŵ + O�ŵ2��/dû

= d�− Â�w� + B̂�w� · ŵ + O�ŵ2��/dû

= Â�w��� w · g · B�u� + B̂�w� · dŵ/dû , �A40�

where it is implicit that û is set to zero at the end. It implies

�1 − ��wÂ�w��t · g� · B�u� = B̂�w��1 + g · �uA�u�� + O�û� .

�A41�

This can also be written as

�dû/dŵ�t · B�u� = B̂�w� · dŵ/dû . �A42�

Equivalently,

B�u� = �dŵ/dû�t · B̂�w� · dŵ/dû . �A43�

Finally, the relation between the B̂ and B functionals can be
written as

B�u� = �1 + g · �uA�u��t · B̂�w� · �1 + g · �uA�u�� ,

�A44�

where in this relation u and w are related via

w − u = g · A�u� = g · Â�w� . �A45�

It can also be written equivalently as

B̂�w� = �1 − g · �wÂ�w��t · B�u� · �1 − g · �uÂ�w�� .

�A46�

4. Evaluation of the functionals

Let us now evaluate the functionals Âxt��wyt�� and

B̂xt,x�t���wyt�� in various situations.
Let us consider first T�0 equilibrium dynamics, i.e., a

driving function wyt which evolves infinitely slowly between
wyt1

=w1�y� and wyt2
=w2�y� such that the system always re-

mains in equilibrium �i.e., we consider the limit t2− t1→� at
fixed w1−w2�. From Eq. �A11� and STS it is clear that

Â�w�= Â�0�=0 in that limit. This implies u=w in Eq. �A45�
and also A�u�=0. It then implies that B̂�w�=B�w� and one
recovers the results of Refs. �57,88� for the statics using rep-
licas. More precisely one expects in that limit that

B̂yt,y�t��w�=Byt,y�t��w�=�w1�y��w2�y��R�w1 ,w2�, where R̂=R is
the two-replica functional of the statics. Hence it is a state-
ment only about the infinitely separated time part of the B�w�
functional and not about the smaller time separation part
�which contains the renormalization of 
 and highly compli-
cated activated dynamics as described in �33��.

Consider now T=0 and wyt=w�t�=vt. From translational

invariance Âxt�w� �see, e.g., Eq. �A11�� can only be a time
and space independent v-dependent constant �assuming
boundary conditions do not break translational invariance�
which we choose to call f�m ,v�. Because of Eq. �A45� one
must have the equality

Âxt�w� = Axt�u� = f�m,v� �A47�

and u=w−m−2f�m ,v�=vt−m−2f�m ,v� in Eq. �A45�. The dif-
ference with the equilibrium statics is that this constant is
nonzero. This is allowed despite the STS symmetry because
we are considering the T=0 limit first and the fact that w�t�
depends on t cannot be ignored even for v=0+. In that limit
one has fc�m ,v=0+�= fc

↑=−fc�m ,v=0−�. Of course the fact
that the constant depends uniquely on v assumes some er-
godicity property, similarly if w�t� is a more complicated
adiabatic function there could be in general some history
dependence. These issues have been discussed in Sec. VIII.
For N=1 we will rely on Middleton’s theorem �87� which
proves unicity of the solution. Note that at T�0 Eq. �A47�
remains true with a f�m ,v ,T� such that f�m ,0 ,T�=0 in
agreement with the discussion of the previous paragraph.

Since the derivative of a constant is zero, using Eqs.
�A47� and �A44� we find that at T=0 with the choice w=vt
one has

Byt,y�t��u = u�t� = vt − m−2f�m,v�� = B̂yt,yt��w� = �̂„v�t − t��… .

�A48�

Denoting Byt,yt��u�=�(u�t�−u�t��) gives

��w� = �̂�w� , �A49�

a result on which is based our measurement of ��w� here and
in �60�.

APPENDIX B: CALCULATION OF SOME INTEGRALS

Here we compute the integrals in Eq. �84� of the main
text. We need
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a

�

dse−s ln s = e−a ln a − Ei�− a� �B1�

Ei�− a� = − 	
a

�

dte−t/t . �B2�

This gives

�̃�W� = �1 − e−W�	
0

�

dae−a�1−e−W� ln�a�e−ae−W
ln�ae−W�

− �1 − e−W�	
0

�

dae−a�1−e−W� ln�a�Ei�− ae−W�

+ e−W��E
2 +

�2

6
+ X�E� − �E

2 . �B3�

Consider the integral

− 	
0

�

dae−a�1−e−W� ln�a�Ei�− ae−W�

= 	
0

�

dae−a�1−e−W� ln a	
ae−W

�

dte−t/t

= 	
1

�

db	
0

�

dae−a�1−e−W� ln a	
ae−W

�

dte−tb

= 	
1

� db

b
	

0

�

da ln ae−a�1−e−W�−ae−Wb

= 	
1

� db

b

1

�1 − e−W� + be−W

�	
0

�

dae−a�ln a − ln„�1 − e−W� + be−W
…�

= − �E
W

1 − e−W −
1

6�1 − e−W�

���2 − 3W2 + 3 ln2�eW − 1� + 6 Li2� 1

1 − eX�� .

�B4�

This yields

�̃�x� =
x2

2
−

1

2
log2�ex − 1� − Li2� 1

1 − ex� , �B5�

which can be rewritten as Eq. �85� in the main text.

APPENDIX C: AVALANCHE PROCESS AND MARKOV
CHAIN

It is useful to recast the avalanche process for the discrete
model of uncorrelated forces as a Markov chain, and define
an algorithm for easy use in the numerics.

Let us index jumps by n, they occur at positions un
−
ªun

�integer�, where the force is Fn �real�. Note that the w posi-
tion of the jump is wn=un−m−2Fn. Given �un ,Fn� one finds

the next jump �un+1 ,Fn+1� by the following algorithm:

un+1 = un + sn, Fn+1 = fsn
, �C1�

sn = min�p = 1,2, . . . such that fp � Fn + m2p� , �C2�

where f1 , f2 , . . . are a sequence of IID random variables of
distribution P0�f�. The sn �integers greater or equal to one�
are the size of the avalanche and are determined at the same
time. The variables �sn ,Fn+1� form a Markov chain with con-
ditional probability P�sn ,Fn+1 �Fn�.

P�s,F��F� = P0�F����F + m2s� F���
k=1

s−1

H�F + m2k� ,

�C3�

P�s�F� = �1 − H�F + m2s���
k=1

s−1

H�F + m2k� , �C4�

H�F� = 	
F

�

dfP0�f� , �C5�

which is normalized �s�1P�s �F�=1 using that
1−H1+ �1−H2�H1+ �1−H3�H1H2+ ¯ =1−H1H2H3. . . and
the fact that the Hk tend to zero as k increases.

Starting from, for instance, P0�F0�, the distribution for Fn
is given by

Pn�Fn� = P�Fn�Fn−1�P�Fn−1�Fn−2� ¯ P�F1�F0�P0�F0� ,

�C6�

P�F��F� = �
s�1

P�s,F��F� . �C7�

It converges to a stationary probability, noted P̃�F�, which
satisfies

�
s�1

P�s,F��F�P̃�F� = P̃�F�� . �C8�

Once we find P̃�F� the joint distribution of �sn ,Fn+1 ,Fn� is
known,

P�sn,Fn+1,Fn� = P�snFn+1�Fn�P̃�Fn� . �C9�

Hence the avalanche-size distribution is

P�s� =	 dFP�s�F�P̃�F� . �C10�

The sequence of waiting times is such that

wn+1 − wn = Wn = sn − m−2�Fn+1 − Fn� . �C11�

Hence the joint size and waiting-time distribution is

P�W,s� =	 dFdF��„W − s + m−2�F� − F�…P�s,F��F�P̃�F� .

�C12�

The problem is thus to determine the solution of Eq. �C8�.
One can formally write it as an infinite product,
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P̃�F0� =	 dF1dF2 . . . �
k=1

�

P�Fk−1�Fk� , �C13�

P�F��F� = P0�F���
s�1

��F + m2s� F���
k=1

s−1

H�F + m2k� ,

�C14�

which however also contains an infinite number of integra-
tions. This method does not seem very practical �see, how-
ever, �64�� and in the text we obtain the result by another
method.

APPENDIX D: GENERAL RESULTS FOR
UNCORRELATED DISORDER

Proof that P�w�= P�s�. Suppose that the following vari-
able transformation holds between j−w, and the correspond-
ing

f�j − w� = aw�j� �D1�

up to a constant shift and a rescaling. We recall that
f�y�=exp�y� �Gumbel�, f�y�=y�, y�0 �Weibull�, and
f�y�= �−y�−�, y�0 �Fréchet�.

Then

Pw�w�,s� S� =	 dyf��y�e−f�y+W�−f�y+s�+f�y�, �D2�

where integration bounds depend on the class �real axis for
Gumbel, positive axis for Weibul, and negative axis for
Fréchet�. Using the relations in the text one finds that the
joint waiting-time and avalanche-size distribution is

P�w�W,s� S� =

	
0

�

dyf��y�e−f�y+W�−f�y+S�+f�y�

	
0

�

dyf��y�e−f�y�

, �D3�

where the denominator is such that the distribution is prop-
erly normalized. Also note that for some choice of variables,
one has to be careful with the bounds of integration, see the
Fréchet class, Eq. �183�.

This formula shows that avalanche-size and waiting-time
distribution are equal for all microscopic �uncorrelated� dis-
order: P�S�= P�W�.

The distribution of the local area a=ws defined in the text
can be obtained as follows:

P�a� A� = 	
0

�

dW	
0

�

dS��w�sP�w�W,s� S����WS − A�

= 	
0

�

dW	
0

�

dSP�w�W,s� S��W�S��WS − A�

= 	
0

�

dW	
0

�

dSP�w�W,s� S�

����A − WS� − WS���A − WS��

= − A
�

�A
	

0

�

dW	
0

�

dSP�w�W,s� S���A − WS� .

�D4�

We note a subtle point that when writing the last
term as the derivative with respect to A of
−A�P�w�W ,s�S���A−WS�, the explicit derivative of A
cancels the first term.

Inserting the integral representation �D3� for
P�w�W ,s�S� yields

P�a� A� =

−
A�

�A
	

0

� dW

W
	

0

�

dyf��y�e−f�y+W�−f�y+A/W�+f�y�

	
0

�

dyf��y�e−f�y�

.

�D5�

Note that boundary terms from the partial integration in Eq.
�D4� vanish except for w=0 or s=0, in which case A=0.
Thus we could possibly have a term ���A�. However we
know that for w=0 we do not have a diverging probability
for an avalanche, and vice versa for w and s exchanged. The
above result can also be written as

P�a� A� =

−
A�

�A
	

0

�

dw	
0

�

dyf��y�e−f�y+ew�−f�y+Ae−w�+f�y�

	
0

�

dyf��y�e−f�y�

.

�D6�

For the Gumbel class, f�y�=ey, and this yields the formula
given in the text.

APPENDIX E: FIRST-PASSAGE TIMES AND AVALANCHE
DISTRIBUTIONS

In this appendix we recall the basic method of the back-
ward diffusion equation to compute distributions of first pas-
sage times on a half line and an interval, and then extend it to
compute the first-passage-time distribution in the velocity-
diffusion equation of the ABBM model.

1. First-passage-time distribution on a half line

Let us call T�w� ;w� the first-passage time at w� of a BM
starting at position w�w� at time 0. Let us recall that the
generating function

G�w�,p;w� = 
e−pT�w�;w�� �E1�

satisfies the diffusion equation and boundary conditions

D�w
2 G + b�wG = pG ,

G�w�,p;w�� = 1, G�w�,p = 0;w = − �� = 0 �E2�

for b�0. To see that, one introduces the diffusion kernel on
x� �−� ,w�� in presence of an absorbing boundary at x=w�,
which satisfies
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�tP = D�x
2P − b�xP = D�w

2 P + b�wP ,

P�x,t = 0�w,0� = ��x − w�, P�w�,t�w,0� = 0. �E3�

By definition of the exit time one has for p�0,

G�w�,p;w� = − 	
0

�

dte−pt�t	
x�w�

P�x,t�w,0�

= 1 − p	
x�w�

P̂�x,p�w,0� , �E4�

with P̂ the Laplace transform of P. The latter satisfies

pP̂�x,p�w,0� − ��x − w� = �D�w
2 + b�w�P̂�x,p�w,0� .

�E5�

Multiplying with −p and integrating over x from −� to w�
yields Eq. �E2�.

The solution of Eq. �E2� including the boundary condi-
tions is

G�w�,p;w� = exp�b − �4pD + b2

2D
�w� − w�� . �E6�

For b�0 it satisfies limp→0 G�w , p ;w��=1. It is then in-
verted into the probability P�u ;w�−w�du that
T�w� ;w�� �u ,u+du�,

P�u;W� =
W

�4�D
u−3/2 exp�−

�bu − W�2

4Du
���u� , �E7�

where W=w�−w. Note that for negative drift b�0 one has

lim
p→0

G�w,p;w�� = 1 − q ,

q ª Prob„T�w�;w� = �… = 1 − exp�−
�b��w� − w�

D
�

�E8�

since in that case there is a finite probability q that the walk
starting at w never hits x=w�.

The Laplace transform �LT� of the probability to be at w
at time t can be written as the probability to arrive there for
the first time, and then repeatedly going with and against the
drift, coming always back to w,

LTt→p
w0

�4�Dt
e−�w − bt�2/�4Dt� =

w0

�4pD + b2
e

b−�4pD+b2

2D
w

�
w0

2

2D
G�0,p;− w�

1 +!0
−�p�

1 −!0
+�p�!0

−�p�
, �E9�

where !0
+�p�=Gb=�b��w0 , p ;0� is the return probability going

along the drift, and !0
−�p�=Gb=−�b��w0 , p ;0� going against the

drift �with w0�0 a small cutoff which allows one to cross 0
in the microscopic model�. Equation �E9� expresses that the
probability to be near x=0 is a sum of nth passage time
events; the factor w0

2 /2D=dt=dw2 / �2D� is the change of
measure from time to space.

Similarly consider the problem of the last passage time t0
of a Brownian at w=0, with initial condition w=0 at t=0. Its
Laplace transform can again be expressed as a geometric
series

!last�p� = �1 −!0
−�0��

!0
+�p�

1 −!0
+�p�!0

−�p�
�

1

�1 +
4Dp

b2

.

�E10�

Hence

!last�t0� =
�b�

�4�Dt0

e−b2t0/�4D�, �E11�


t0� =
2D

b2 , 
t0
2� =

12D2

b4 . �E12�

2. First-passage-time distribution on an interval

Consider now a Brownian starting at w in an interval
�wa ,wb�. Consider the functions Ga�w , p�, Gb�w , p�, and
G�w , p�=Ga�w , p�+Gb�w , p� which satisfy the same differ-
ential equation �E2� but with boundary conditions

Ga�wa,p� = 1, Ga�wb,p� = 0,

Gb�wb,p� = 1, Gb�wa,p� = 0. �E13�

Then G�w , p�= 
e−pTab�w�� is the generating function for the
first exit time Tab�w� of the interval �wa ,wb� by a walker
starting at w� �wa ,wb� at time zero. It satisfies Eq. �E2� with
boundary conditions G�wa , p�=1 and G�wb , p�=1. One finds

Ga�w,p� = eb/2D�wa−w� sinh„ �wb − w�…
sinh„ �wb − wa�…

, �E14�

Gb�w,p� = eb/2D�wb−w� sinh„ �w − wa�…
sinh„ �wb − wa�…

, �E15�

 =
1

2D
�4Dp + b2. �E16�

One checks that G�w , p=0� irrespective of the sign of b as
the walk is certain to exit the interval. The function Ga�w , p�
�respectively, Gb�w , p�� is the same generating function re-
stricted to walks exiting in wa �respectively, wb�, with nor-
malizations
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pa = Ga�w,p = 0� =

exp� b

D
�wb − w�� − 1

exp� b

D
�wb − wa�� − 1

, �E17�

pb = Gb�w,p = 0� = 1 − pa, �E18�

for b�0.
One way to derive these results is to introduce the diffu-

sion kernel P�x , t �w ,0� with absorbing boundary conditions
at x=wa and x=wb. Its expression reads in Laplace

P�x,p�w,0� = �eb/2D�x−w�sinh„ �x − wa�…sinh„ �wb − w0�…
D sinh„ �wb − wa�…

for wa � x� w ,

eb/2D�x−w�sinh„ �wb − x�…sinh„ �w − wa�…
D sinh„ �wb − wa�…

for w� x� wb.� �E19�

It satisfies the diffusion equation with the proper boundary
conditions. This is obtained as follows:

G�p,w� = − 	
0

�

dte−pt�t	
wa

wb

dxP�x,t�w,0�

= D��xP��x,p�w,0��x=wa
− �xP��x,p�w,0��x=wb

� ,

�E20�

where the first term is Ga�p ,w� and the second Gb�p ,w�.
They represent the flux from each boundary.

3. Avalanche distribution for the ABBM model

Let s=T�v� ,v� be the first passage “time” from v at time
u=0 to v��v at time s, the avalanche size �here defined with
some velocity cutoff v��. The generating function
G�v� , p ;v�=exp�−sp� satisfies the backward diffusion equa-
tion

��v
2G + �m2v

v
− m2��vG = pG , �E21�

G�v�,p;v�� = 1, G�v�,p; + �� = 0 �E22�

a. Solution without the drift term

From now on we denote

x =
m2v
�

. �E23�

The solution, if one first drops the drift term, is

G�v�,p;v� = � v
v�
��1−x�/2 K�1−x�/2�v�p/��

K�1−x�/2�v��p/��
. �E24�

One expects that it describes correctly small avalanches.
There are two cases. For x	1 one has G�p=0�=1, i.e.,

the velocity is certain to reach any fixed v��0. The leading
behavior at small v ,v� is then for x�1,

G − 1 = − C�p/4���1−x�/2, �E25�

C = −

�� x − 1

2
�

��1 − x

2
� �v1−x − �v��1−x� . �E26�

Inverse Laplace transform from p to s yields a distribution
1 /s� with the value of �= �3−x� /2 given in the text. The
small avalanche cutoff s0, necessary since 1 /s� is not normal-
izable at small s for ��1, is provided by v ,v� and its full
form can in principle be obtained by inverse Laplace trans-
form from p to s of Eq. �A24�. Its order of magnitude is easy
to read from Eq. �E24� as s0�v2 /� �see below for a more
precise estimate�.

One notes that the limit v�→0 can be taken for x�1 for
any v. It is then easy to inverse Laplace transform �E24� in
that limit and to obtain the probability that if the velocity at
u=0 is v, then the next stopping point u� is in the interval
u�� �s ,s+ds� as

G�0,s;v�ds =
1

�� �
ds

s
� s0

s
� e−s0/s, �E27�

s0 = v2/�4��,  = �1 − x�/2. �E28�

Next one can use the stationary distribution to find the prob-
ability that choosing a u=0 the next stopping point is at s,

	
0

�

dvG�0,s;v�Peq�v� =
2�

�� ���x�vs 
�m2

�
�x

�4��− 
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where to be consistent we have assumed s�sm=� /m4.
For x�1, the probability of ever reaching v��0 is

G�p=0�= � v�
v �x−1�1, from Eq. �E24�. At small v ,v� �and of

the same order� the following expansion holds for 1�x�3:

G = �v�

v
�x−1�1 +

��1 − x

2
�

�� x − 1

2
��

p

4�
��x−1�/2

�vx−1 − �v��x−1�� .

�E29�

This shows that, conditioned to returning near zero velocity
the avalanches size distribution has again a tail 1 /s� for
s�s0, with �= �1+x� /2�1.

b. Solution with the drift term

Taking into account the drift term in Eq. �E21� reintro-
duces the large-size cutoff for avalanches at sm=� /m4.

It is also possible to solve the full problem, with the drift.
One finds for the Laplace transform of the first-passage time:

G = �v�,p;v� = � v
v�
�1−x

e
m2−�m4+4p�

2�
�v−v��

U�1 − v
m2

2��1 +
m2

�m4 + 4p�
�,2 − x,

�m4 + 4p�

�
V�

U�1 − V�
m2

2��1 +
m2

�m4 + 4p�
�,2 − x,

�m4 + 4p�

�
V�� �E30�

which reduces for v=0+ to the expression obtained for qua-
sistatic avalanches,

G�v�,p;v��v�,p;v� = e
m2−�m4+4p�

2�
�v−v��, �E31�

from which, after inverse Laplace, Eq. �202� was obtained.
One can now check that G�p=0�=1 for all x and

v ,v��0; hence thanks to the drift the walk comes back in-
finitely often, as announced in the text.

Let us consider the leading behavior at small v ,v�. The
expansion has the form

G =
A�1 + O�v2�� + Bv1−m2v/��1 + O�v��

A�1 + O„�v��2
…� + B�v��1−m2v/��1 + O�v���

where A and B are complicated functions of p. Here we
focus on the case v�� /m2, then

G − 1 =
B

A
�v1−m2v/� − �v��1−m2v/�� . �E32�

This yields

G − 1 = ��m4 + 4p�

�
�1−m2v/���− 1 +

m2v
�

�
��1 −

m2v
�

�

�

��1 −
m2v
2� �1 +

m2

�m4 + 4p�
��

��m2v
2� �1 −

m2

�m4 + 4p�
��

��v1−m2v/� − �v��1−m2v/�� . �E33�

For p�sm
−1=m4 /� one can check that this expression repro-

duces Eq. �E25� above; hence in that case the distribution of
small avalanches can be found neglecting the drift. From this

expression Laplace inversion allows, in principle, to obtain
the full avalanche distribution. We will not attempt to per-
form it but note that there is an additional pole structures for
p= pn,

pn = −
m4

4�

n�n − x�

�n −
x

2
�2 , n = 1,2, . . . , �E34�

which implies a decay

P�s� � e
−

�1−x�

�2 − x�2
s/sm

�E35�

at large s�sm.

APPENDIX F: SOME ONE-POINT OBSERVABLES FOR
THE BROWNIAN FORCE LANDSCAPE

We present here a few partial results for one-point observ-
ables for the Brownian force landscape, deferring a more
complete study to the future.

Note that since F�u� is an unbounded Brownian
landscape, it has an infinite threshold force 2fd
=max F�u�−min F�u�. However the model studied here of a
particle dragged by a parabolic well is well defined, and from
it one defines an average critical force,

fc�m� ª m2�w − u�w�� � m2−�, �F1�

which diverges6 as m→0 for ��2. As discussed in the main
text, for �=1 one has �=4.

Let us now examine the one-point probability of the pro-
cess u�w�. Since it is a long-range correlated landscape, there
is a subtlety linked to the choice of boundary conditions.

6Note that in fact this was already the case for some members of
class I.

PIERRE LE DOUSSAL AND KAY JÖRG WIESE PHYSICAL REVIEW E 79, 051105 �2009�

051105-36



1. Special boundary conditions

If we first fix u�w=0�=0, the probability Pw�u� that
u�w�=u for u�0 is equal to the probability that the first
passage time of ��u�� at w is u, starting at zero. Hence we
find

Pw�u� = P�u;w� , �F2�

where P�u ;w� is defined in Eq. �E7�. In fact, it follows from
the Markov property that if we impose u�w=0�=0 and leave
the future unconstrained, the n-point probability is

Pw1,. . .,wn
�u1, . . . ,un� = P�u1;w1�P�u2 − u1;w2 − w1�� ¯

� P�un − un−1;wn − wn−1� �F3�

for 0	w1	w2 . . .	wn. Computing the moments of Eq. �F2�
one finds

u�w� − w = 0, �F4�

�u�w� − w�2 = 2Dw =
2�

m4 w , �F5�

hence one finds that the critical force fc�m�, which is propor-
tional to the average extension of the spring pulling the par-
ticle, is zero. On the other hand, the total area of the hyster-
esis loops per unit length cannot vanish—in fact from Eq.
�F5� we can guess that it should grow as �w. Hence by
contrast with the case of the uncorrelated force landscape,
these two quantities cannot be equal.

To understand this apparent paradox let us note that to
insure u�w=0�=0 one needs to impose rather strong condi-
tions, e.g., F�u�=0 for all u	0. Otherwise, there is a non-
zero probability that the BM has taken values ��u��w=0 in
the past, i.e., for u�0, which is in contradiction with
u�w=0�=0. If we now want to use the hysteresis loop argu-
ment in a symmetric way, it would require a similar choice at
some prescribed u�w=W�=0. But then Eqs. �F2� and �206�
do not hold anymore �it holds for a Brownian unconstrained
in the future�. Since that procedure produces a nonstationary
result, we do not discuss it further.

2. A more generic situation

First note that shifting F�u� by a constant leaves �200�
unchanged, but also shifts w−u�w� while it does not change
the area of the hysteresis loop. Hence comparing
fc�m�=m2�w−u�w�� with the area of the hysteresis loop
makes sense only for a statistically symmetric landscape. To
eliminate this unimportant shift we can consider a distribu-
tion of forces symmetric around zero by setting F�u=0�=0.
This is one way to fix the problematic zero mode of the
Brownian landscape. This does not mean that u1ªu�w=0� is
necessarily at zero. u1 is the position of the first crossing of
��u�=w=0 by the BM. The probability distribution of
u1	0 is given by �see Appendix E�

!last�u1� =
m2

�4���u1�
e−m4�u1�/�4����− u1� . �F6�

This yields a critical force

fc�m� = − m2u1 =
2�

m2 , �F7�

which makes more sense, i.e., it is positive and obeys the
expected scaling.

However, to be a bit more general, what we have just
computed is the conditional probability Pw1

�u1 �F�ua�= fa�
with the choice ua=0 and fa=0 �which can be realized using
shifts of the axis� and the additional choice w1=ua− fa /m2

�hence w1=0�. One wonders whether the critical force de-
pends on that choice.

To answer this question, we need to compute
Pw1

(u1 �F�0�=0) as a function of w1. There are two cases: If
w1�0, then u1�0 and one has

Pw1	0„u1�F�0� = 0…

= ��− u1�LTp→−u1

−1 Gb=�b���w1�,p;0�!last�p� .

�F8�

This gives

Pw1	0„u1�F�0� = 0… = ��− u1�
�b�

�4�D�u1

e−��b��u1� − �w1��2/�4D�u1��.

One finds

	 du1u1Pw1	0„u1�F�0� = 0… = −
2D

b2 −
�w1�
�b�

. �F9�

If w1�0 there are two subcases, and the total reads

Pw1�0„u1�F�0� = 0…

= ��− u1�LTp→−u1

−1 Gb=−�b��w1,p;0�!last�p�

+ ��u1�LTp→u1

−1 Gb=�b��w1,p;0�

Ã†1 − Gb=−�b��w1,p = 0;0�‡ . �F10�

This gives

Pw1�0�u1�F�0� = 0�

= ��− u1�
�b�

�4�D�u1�
e−��b� �u1� + w1�2/�4D�u1��

+ ��u1�
w1

�4�D
u1

−3/2e−��b�u1 − w1�2/�4Du1��1 − e−
�b�
D

w1� ,

�F11�

which can be checked to be correctly normalized. One ob-
tains

	
−�

0

du1u1Pw1�0„u1�F�0� = 0… = − �2D

b2 +
w1

�b� �e−
�b�
D

w1,
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0

+�

du1u1Pw1�0„u1�F�0� = 0… =
w1

�b�
�1 − e−

�b�
D

w1� .

Hence we find, setting �b�=1 and D=� /m4, conditioned to
F�0�=0,

m2
„w1 − u�w1�… = 2�/m2, w1 	 0,

m2
„w1 − u�w1�… = 2�m2w1 + �/m2�e−m4w1/�, w1 � 0

�F12�

For the past �w1	0� one recovers the previous result, while
for the future it decreases to zero at large w1.

We could try to generalize further by picking a ua and
averaging over fa with some distribution. Using the condi-
tion w=u−F�u� /m2 one can check that

Pw1
„u1�F�ua� = fa… = Pw1−ua+fa/m2„u1 − ua�F�0� = 0… .

Hence we can use the previous calculation. For fixed w1, ua,
and fa one has

m2	 du1�w1 − u1�Pw1
„u1�F�ua� = fa… = m2	 du1�w1 − u1�Pw1−ua+fa/m2„u1 − ua�F�0� = 0…

= m2	 du1��w1� − fa/m2 − u1��Pw1�
„u1��F�0� = 0…

= 2�/m2 − fa, for w1 − ua + fa/m2 	 0

2�m2w1� + �/m2�e−m4w1�/� − fa for w1� = w1 − ua + fa/m2 � 0,� �F13�

which can, in principle, be averaged on fa. It is not clear
however at this stage which distribution to choose and how
to relate these quantities to the area of the hysteresis loop.
Further work is needed to clarify these issues.

APPENDIX G: FIRST RETURN PROBABILITIES IN D
DIMENSIONS

In this appendix, we recall standard methods to derive the
first return probability in d dimensions, using a regular hy-
percubic lattice.

Consider a random walk on the integers Z. The probabil-
ity to return to the origin after t steps �t=2m even� is �89�

ut = � t

t/2 �2−t. �G1�

This is seen by noting that giving weight a for a step to the
right, and b=1−a for a step to the left, the probability to be
at x after t steps is the same as taking i steps to the right and
t− i to the left, with x=2i− t and equal to px=aibt−i� t

i �, from
which the above result is obtained for a=b=1 /2, i= t /2. We
note u0=1.

The probability to return to the origin for the first time
after t steps is noted f t, and we note f0=0. In order to be at
the origin at time t, we must return for the first time no later
than t, and can then make a new excursion. Therefore we
have �for t�0 even�

ut = f2ut−2 + f4ut−4 + ¯ + f tu0. �G2�

Introducing the generating functions

u�x� ª �
m=0

�

u2mxm, f�x� ª �
m=0

�

f2mxm, �G3�

Eq. �G2� can be written as

u�x� = 1 + f�x�u�x� . �G4�

This gives for the probabilities �G1�

u�x� =
1

�1 − x
, f�x� = 1 − �1 − x; �G5�

thus the first return probability in d=1 at time t is

f t =
ut

t − 1
. �G6�

At large times,

u2m �
1

��m
, f2m �

1

2��m3/2 . �G7�

We now want to calculate the same quantities in d dimen-
sions, noted ut

d and f t
d. ut

d is simply

ut
d = �ut�d. �G8�

As an example, in d=2,

ud=2�x� =
2K�x�
�

, fd=2�x� = 1 −
�

2K�x�
, �G9�

with K the elliptic K function, and in d=3,
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u�x� = �2K�1

2
�1 − �1 − x��
�

�
2

. �G10�

In general, an analytic solution for the coefficients is not
possible. We therefore give the asymptotic behavior for large
t, i.e., small 1−x such that the series picks up contributions
at large times. Noting sª−ln x, we obtain for d�2

ud�x� = �
m=0

�

u2m
d xm � 	

0

�

dm
1

��m�d/2 exp�− sm�

= �−d/2s�d/2�−1��1 −
d

2
� . �G11�

Note that for d�2, a uv cutoff is needed, which we discuss
below. Using Eq. �G4� yields

fd�x� = 1 −
1

ud�x�
� 1 −

�d/2s1−d/2

��1 −
d

2
� . �G12�

Transforming inverse Laplace gives

f2m
d �

2 − d

2
md/2−2�d/2−1 sin�d�

2
� for d� 2.

�G13�

Let us now consider d�2. Then

ud�x� � ud�1� + �−d/2sd/2−1��1 −
d

2
� , �G14�

ud�1� � 1 + �−d/2��d

2
�, d� 2, �G15�

ud=3�1� =
�

��3/4�4 = 1.3932 . . . , �G16�

where the approximation for ud�1� valid for d near 2 was
obtained summing using u2m

d ���m�−d/2 �it gives 1.469 for
d=3�. Then

fd�x� = 1 −
1

ud�x�
� 1 −

1

ud�1�
+

1

ud�1�2�
−d/2sd/2−1��1 −

d

2
�

+ O�sd−2� . �G17�

Note that 1−1 /ud�1� is the probability that the walk never
returns �which equals 0.2822… in d=3�. Conditioned to re-
turning, the probability that the first return occurs at t=2m
steps decays at large t as

ud�1�f t=2m
d �

1

ud�1�
�−d/2m−d/2 for d� 2. �G18�

We see that at d=2 the exponent for the first return probabil-
ity changes direction, and that the amplitudes of both Eqs.
�G13� and �G18� go to 0 �90–93�.
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